toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boronat, M.; Fullana, E.; Fuster, J.; Gomis, P.; Hoang, A.H.; Widl, A.; Mateu, V.; Vos, M. url  doi
openurl 
  Title (up) Top quark mass measurement in radiative events at electron-positron colliders Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 804 Issue Pages 135353 - 9pp  
  Keywords  
  Abstract In this letter, we evaluate the potential of linear e(+)e(-) colliders to measure the top quark mass in radiative events and in a suitable short-distance scheme. We present a calculation of the differential cross section for production of a top quark pair in association with an energetic photon from initial state radiation, as a function of the invariant mass of the t (t) over bar. This matchedcalculation includes the QCD enhancement of the cross section around the t (t) over bar production threshold and remains valid in the continuum well above the threshold. The uncertainty in the top mass determination is evaluated in realistic operating scenarios for the Compact Linear Collider (CLIC) and the International Linear Collider (ILC), including the statistical uncertainty and the theoretical and experimental systematic uncertainties. With this method, the top quark mass can be determined with a precision of 110 MeV in the initial stage of CLIC, with 1 ab(-1) at root s = 380 GeV, and with a precision of approximately 150 MeV at the ILC, with L = 4 ab(-1) at root s = 500GeV. Radiative events allow measurements of the top quark mass at different renormalization scales, and we demonstrate that such a measurement can yield a statistically significant test of the evolution of the MSR mass m(t)(MSR)(R) for scales R < m(t).  
  Address [Boronat, M.; Fullana, E.; Fuster, J.; Gomis, P.; Vos, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedratico J Beltran, Valencia 46980, Spain, Email: pablo.gomis@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000548740300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4463  
Permanent link to this record
 

 
Author CLICdp Collaboration (Abramowicz, H. et al.); Boronat, M.; Fullana, E.; Fuster, J.; Garcia, I.; Gomis Lopez, P.; Perello, M.; Ros, E.; Vos, M. url  doi
openurl 
  Title (up) Top-quark physics at the CLIC electron-positron linear collider Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 003 - 88pp  
  Keywords e plus -e- Experiments; Top physics  
  Abstract The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies root s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of ttH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.  
  Address [Abramowicz, H.; Benhammou, Y.; Borysov, O.; Joffe, A.; Levy, A.; Levy, I.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000497709600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4203  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Aksoy, A.; Esperante, D.; Gimeno, B.; Latina, A.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title (up) X-band RF photoinjector design for the CompactLight project Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1014 Issue Pages 165709 - 10pp  
  Keywords Photoinjector; X-band; Electron sources; Free electron laser; Beam generation  
  Abstract RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704382900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4983  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva