|   | 
Details
   web
Records
Author Aplin, S.; Boronat, M.; Dannheim, D.; Duarte, J.; Gaede, F.; Ruiz-Jimeno, A.; Sailer, A.; Valentan, M.; Vila, I.; Vos, M.
Title (up) Forward tracking at the next e(+)e(-) collider part II: experimental challenges and detector design Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T06001 - 26pp
Keywords Particle tracking detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors)
Abstract We present the second in a series of studies into the forward tracking system for a future linear e(+)e(-) collider with a center-of-mass energy in the range from 250 GeV to 3 TeV. In this note a number of specific challenges are investigated, which have caused a degradation of the tracking and vertexing performance in the forward region in previous experiments. We perform a quantitative analysis of the dependence of the tracking performance on detector design parameters and identify several ways to mitigate the performance loss for charged particles emitted at shallow angle.
Address [Aplin, S.; Gaede, F.] Deutsche Elektronen Synchrotron, D-22607 Hamburg, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000321627400024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1503
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title (up) Helium identification with LHCb Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02010 - 23pp
Keywords dE/dx detectors; Ion identification systems; Large detector systems for particle and astroparticle physics; Particle identification methods
Abstract The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: rmoise@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6068
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J. J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J. D.; Zuñiga, J.
Title (up) KM3NeT broadcast optical data transport system Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 2 Pages T02001 - 22pp
Keywords Cherenkov detectors; Data Processing; Large detector systems for particle and astroparticle physics; Optics
Abstract The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000989217700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5565
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title (up) LHCb detector performance Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 7 Pages 1530022 - 73pp
Keywords Large detector systems for particle and astroparticle physics; particle tracking detectors; gaseous detectors; calorimeters; Cherenkov detectors; particle identification methods; detector alignment and calibration methods; trigger; LHC
Abstract The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.
Address [Bediaga, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000350814000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2151
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title (up) Monitoring and data quality assessment of the ATLAS liquid argon calorimeter Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P07024 - 55pp
Keywords Particle identification methods; Calorimeters; Large detector systems for particle and astroparticle physics
Abstract The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis.
Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000340050700045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1915
Permanent link to this record