toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Clement, G.; Fabbri, A. url  doi
openurl 
  Title (up) A scenario for critical scalar field collapse in AdS(3) Type Journal Article
  Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 32 Issue 9 Pages 095009 - 16pp  
  Keywords critical collapse; exact solutions; AdS(3)  
  Abstract We present a family of exact solutions, depending on two parameters alpha and b (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant Lambda. For b not equal 0 these solutions reduce to the static Banados-Teitelboim-Zanelli (BTZ) family of vacuum solutions, with mass M = -alpha. For b not equal 0, the solutions become dynamical and develop a strong spacelike central singularity. The alpha < 0 solutions are black-hole like, with a global structure topologically similar to that of the BTZ black holes, and a finite effective mass. We show that the near-singularity behavior of the solutions with alpha > 0 agrees qualitatively with that observed in numerical simulations of sub-critical collapse, including the independence of the near-critical regime on the angle deficit of the spacetime. We analyze in the Lambda = 0 approximation the linear perturbations of the self-similar threshold solution, alpha = 0, and find that it has only one unstable growing mode, which qualifies it as a candidate critical solution for scalar field collapse.  
  Address [Clement, Gerard] Univ Savoie, CNRS, LAPTh, F-74941 Annecy Le Vieux, France, Email: gerard.clement@lapth.cnrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353351500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2192  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. url  doi
openurl 
  Title (up) Accelerated observers and the notion of singular spacetime Type Journal Article
  Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 35 Issue 5 Pages 055010 - 18pp  
  Keywords general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity  
  Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.  
  Address [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424042100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3473  
Permanent link to this record
 

 
Author Araujo Filho, A.A. url  doi
openurl 
  Title (up) Analysis of a regular black hole in Verlinde's gravity Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 1 Pages 015003 - 30pp  
  Keywords Verlinde's emergent gravity; dark matter; shadows; black hole  
  Abstract This work focuses on the examination of a regular black hole within Verlinde's emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114102700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5841  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; de Andres, D.; Delhom, A. url  doi
openurl 
  Title (up) Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
  Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 37 Issue 22 Pages 225013 - 25pp  
  Keywords alternative theories of gravity; metric-affine gravity; anisotropic solutions  
  Abstract Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.  
  Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000580878200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4576  
Permanent link to this record
 

 
Author Navarro-Salas, J. url  doi
openurl 
  Title (up) Black holes, conformal symmetry, and fundamental fields Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 8 Pages 085003 - 14pp  
  Keywords black holes; horizons; singularities; conformal symmetry; quantum fields; Standard Model  
  Abstract Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.  
  Address [Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001187435100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6029  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva