|   | 
Details
   web
Records
Author Beltrame, P. et al; Oliver, J.F.; Rafecas, M.; Solevi, P.
Title (down) The AX-PET demonstrator-Design, construction and characterization Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 654 Issue 1 Pages 546-559
Keywords PET; Axial geometry; Geiger-mode Avalanche Photo Diodes (G-APD); SiPM
Abstract Axial PET is a novel geometrical concept for Positron Emission Tomography (PET), based on layers of long scintillating crystals axially aligned with the bore axis. The axial coordinate is obtained from arrays of wavelength shifting (WLS) plastic strips placed orthogonally to the crystals. This article describes the design, construction and performance evaluation of a demonstrator set-up which consists of two identical detector modules, used in coincidence. Each module comprises 48 LYSO crystals of 100 mm length and 156 WLS strips. Crystals and strips are readout by Geiger-mode Avalanche Photo Diodes (G-APDs). The signals from the two modules are processed by fully analog front-end electronics and recorded in coincidence by a VME-based data acquisition system. Measurements with point-like (22)Na sources, with the modules used both individually and in coincidence mode, allowed for a complete performance evaluation up to the focal plane reconstruction of point sources. The results obtained are in good agreement with expectations and proved the set-up to be ready for the next evaluation phase with PET phantoms filled with radiotracers.
Address [Casella, C; Dissertori, G; Djambazov, L; Lustermann, W; Nessi-Tedaldi, F; Pauss, F; Renker, D; Schinzel, D] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland, Email: Chiara.Casella@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000295765100078 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 790
Permanent link to this record
 

 
Author Brzezinski, K.; Oliver, J.F.; Gillam, J.; Rafecas, M.
Title (down) Study of a high-resolution PET system using a Silicon detector probe Type Journal Article
Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 59 Issue 20 Pages 6117-6140
Keywords PET; high-resolution imaging; Si detectors; PET insert
Abstract A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 x 52 array of 1 x 1 x 1 mm(3) pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed visible improvement in resolution when including the probe in the simulations. The image quality study demonstrated that contrast and spill-over ratio in other areas of the FOV were not sacrificed for this enhancement. The CNR study performed on the breast phantom indicates increased lesion detectability provided by the probe.
Address [Brzezinski, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: brzezinski@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000343092300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1963
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Rafecas, M.
Title (down) Simulated one-pass list-mode: an approach to on-the-fly system matrix calculation Type Journal Article
Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 58 Issue 7 Pages 2377-2394
Keywords
Abstract In the development of prototype systems for positron emission tomography a valid and robust image reconstruction algorithm is required. However, prototypes often employ novel detector and system geometries which may change rapidly under optimization. In addition, developing systems generally produce highly granular, or possibly continuous detection domains which require some level of on-the-fly calculation for retention of measurement precision. In this investigation a new method of on-the-fly system matrix calculation is proposed that provides advantages in application to such list-mode systems in terms of flexibility in system modeling. The new method is easily adaptable to complicated system geometries and available computational resources. Detection uncertainty models are used as random number generators to produce ensembles of possible photon trajectories at image reconstruction time for each datum in the measurement list. However, the result of this approach is that the system matrix elements change at each iteration in a non-repetitive manner. The resulting algorithm is considered the simulation of a one-pass list (SOPL) which is generated and the list traversed during image reconstruction. SOPL alters the system matrix in use at each iteration and so behavior within the maximum likelihood-expectation maximization algorithm was investigated. A two-pixel system and a small two dimensional imaging model are used to illustrate the process and quantify aspects of the algorithm. The two-dimensional imaging system showed that, while incurring a penalty in image resolution, in comparison to a non-random equal-computation counterpart, SOPL provides much enhanced noise properties. In addition, enhancement in system matrix quality is straightforward (by increasing the number of samples in the ensemble) so that the resolution penalty can be recovered when desired while retaining improvement in noise properties. Finally the approach is tested and validated against a standard (highly accurate) system matrix using experimental data from a prototype system-the AX-PET.
Address [Gillam, J. E.; Solevi, P.; Oliver, J. F.; Rafecas, M.] Univ Valencia, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: john.gillam@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000316181300024 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1370
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Casella, C.; Heller, M.; Joram, C.; Rafecas, M.
Title (down) Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events Type Journal Article
Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 59 Issue 15 Pages 4065-4083
Keywords positron emission tomography (PET); inter-crystal scattering; sensitivity
Abstract The development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction. Generally, treatment of ICS events will attempt to determine which of the possible candidate lines of response (LoRs) correctly determine the annihilation photon trajectory. However, methods of assessment often have low success rates or are computationally demanding. In this investigation alternative approaches are considered. Experimental data was taken using the AX-PET prototype and a NEMA phantom. Three methods of ICS treatment were assessed-each of which considered all possible candidate LoRs during image reconstruction. Maximum likelihood expectation maximization was used in conjunction with both standard (line-like) and novel (V-like in this investigation) detection responses modeled within the system matrix. The investigation assumed that no information other than interaction locations was available to distinguish between candidates, yet the methods assessed all provided means by which such information could be included. In all cases it was shown that the signal to noise ratio is increased using ICS events. However, only one method, which used full modeling of the ICS response in the system matrix-the V-like model-provided enhancement in all figures of merit assessed in this investigation. Finally, the optimal method of ICS incorporation was demonstrated using data from two small animals measured using the AX-PET demonstrator.
Address [Gillam, John E.; Solevi, Paola; Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: john.gillam@sydney.edu.au
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000340056800006 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1879
Permanent link to this record
 

 
Author Cabello, J.; Torres-Espallardo, I.; Gillam, J.E.; Rafecas, M.
Title (down) PET Reconstruction From Truncated Projections Using Total-Variation Regularization for Hadron Therapy Monitoring Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3364-3372
Keywords
Abstract Hadron therapy exploits the properties of ion beams to treat tumors by maximizing the dose released to the target and sparing healthy tissue. With hadron beams, the dose distribution shows a relatively low entrance dose which rises sharply at the end of the range, providing the characteristic Bragg peak that drops quickly thereafter. It is of critical importance in order not to damage surrounding healthy tissues and/or avoid targeting underdosage to know where the delivered dose profile ends-the location of the Bragg peak. During hadron therapy, short-lived beta(+)-emitters are produced along the beam path, their distribution being correlated with the delivered dose. Following positron annihilation, two photons are emitted, which can be detected using a positron emission tomography (PET) scanner. The low yield of emitters, their short half-life, and the wash out from the target region make the use of PET, even only a few minutes after hadron irradiation, a challenging application. In-beam PET represents a potential candidate to estimate the distribution of beta(+)-emitters during or immediately after irradiation, at the cost of truncation effects and degraded image quality due to the partial rings required of the PET scanner. Time-of-flight (ToF) information can potentially be used to compensate for truncation effects and to enhance image contrast. However, the highly demanding timing performance required in ToF-PET makes this option costly. Alternatively, the use of maximum-a-posteriori-expectation-maximization (MAP-EM), including total variation (TV) in the cost function, produces images with low noise, while preserving spatial resolution. In this paper, we compare data reconstructed with maximum-likelihood-expectation-maximization (ML-EM) and MAP-EM using TV as prior, and the impact of including ToF information, from data acquired with a complete and a partial-ring PET scanner, of simulated hadron beams interacting with a polymethyl methacrylate (PMMA) target. The results show that MAP-EM, in the absence of ToF information, produces lower noise images and more similar data compared to the simulated beta(+) distributions than ML-EM with ToF information in the order of 200-600 ps. The investigation is extended to the combination of MAP-EM and ToF information to study the limit of performance using both approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827200023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1610
Permanent link to this record