toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S. url  doi
openurl 
  Title Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America Type Journal Article
  Year 2014 Publication Atmospheric Research Abbreviated Journal Atmos. Res.  
  Volume 149 Issue Pages 120-135  
  Keywords Cosmic ray; Aerosol; Air masses; Atmospheric effect; HYSPLIT; GDAS  
  Abstract The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth tau(a)(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low – annual mean tau(a)(3.5 km) similar to 0.04 – and shows a seasonal trend with a winter minimum – tau(a)(3.5 km) – 0.03 -, and a summer maximum – tau(a)(3.5 km) similar to 0.06 -, and an unexpected increase from August to September tau(a)(35 km) similar to 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.  
  Address [Pierre Auger Collaborat] Observ Pierre Auger, RA-5613 Malargue, Argentina  
  Corporate Author Thesis (up)  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-8095 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341468100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1916  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S. url  doi
openurl 
  Title Reconstruction of inclined air showers detected with the pierre Auger Observatory Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 019 - 32pp  
  Keywords ultra high energy cosmic rays; cosmic ray experiments  
  Abstract We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60 degrees detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.  
  Address [Anchordoqui, L.] CUNY, CUNY Herbert H Lehman Coll, Dept Phys & Astron, New York, NY 10021 USA  
  Corporate Author Thesis (up)  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341848800019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1942  
Permanent link to this record
 

 
Author de Salas, P.F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title Bounds on very low reheating scenarios after Planck Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 12 Pages 123534 - 9pp  
  Keywords  
  Abstract We consider the case of very low reheating scenarios [T-RH similar to O(MeV)] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature T-RH > 4.1 MeV is obtained from big bang nucleosynthesis, while T-RH > 4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.  
  Address [de Salas, P. F.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Valencia, Spain, Email: lattanzi@fe.infn.it  
  Corporate Author Thesis (up)  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367078600010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2502  
Permanent link to this record
 

 
Author de Salas, P.F.; Pastor, S. url  doi
openurl 
  Title Relic neutrino decoupling with flavour oscillations revisited Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 051 - 18pp  
  Keywords cosmological neutrinos; particle physics – cosmology connection; physics of the; early universe; neutrino properties  
  Abstract We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, N-eff. We find a value of N-eff = 3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that Neff can be reduced down to 3.040 or enhanced up to 3.059.  
  Address [de Salas, Pablo F.; Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabrerde@ific.uv.es;  
  Corporate Author Thesis (up)  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381830000052 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2784  
Permanent link to this record
 

 
Author Adhikari, R. et al; Pastor, S.; Valle, J.W.F. url  doi
openurl 
  Title A White Paper on keV sterile neutrino Dark Matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 025 - 247pp  
  Keywords cosmological neutrinos; dark matter experiments; dark matter theory; particle physics – cosmology connection  
  Abstract We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.  
  Address [Drewes, M.; Ibarra, A.; Lasserre, T.; Oberauer, L.; Schoenert, S.] Tech Univ Munich, Phys Dept & Excellence Cluster Univ, James Franck Str 1, D-85748 Garching, Germany, Email: marcodrewes@gmail.com;  
  Corporate Author Thesis (up)  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399409800025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3109  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S. url  doi
openurl 
  Title Calculation of the local density of relic neutrinos Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 034 - 24pp  
  Keywords cosmological neutrinos; dark matter simulations; galaxy clustering; neutrino experiments  
  Abstract Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV. We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N – one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.  
  Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis (up)  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411617000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3308  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N. url  doi
openurl 
  Title Cosmological bounds on neutrino statistics Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 050 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; big bang nucleosynthesis; cosmological parameters from CMBR  
  Abstract We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2 sigma.  
  Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis (up)  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428984100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3551  
Permanent link to this record
 

 
Author Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title PArthENoPE reloaded Type Journal Article
  Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 233 Issue Pages 237-242  
  Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics  
  Abstract We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems  
  Address [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it  
  Corporate Author Thesis (up)  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444667100020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3729  
Permanent link to this record
 

 
Author de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M. url  doi
openurl 
  Title Constraining the invisible neutrino decay with KM3NeT-ORCA Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 789 Issue Pages 472-479  
  Keywords Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes  
  Abstract Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering.  
  Address [de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis (up)  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457165400063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3902  
Permanent link to this record
 

 
Author PTOLEMY Collaboration (Betti, M.G. et al); de Salas, P.F.; Gariazzo, S.; Pastor, S. url  doi
openurl 
  Title A design for an electromagnetic filter for precision energy measurements at the tritium endpoint Type Journal Article
  Year 2019 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.  
  Volume 106 Issue Pages 120-131  
  Keywords PTOLEMY; Relic neutrino; Cosmic Neutrino Background; CNB; Neutrino mass; Transverse drift filter  
  Abstract We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems. (C) 2019 Elsevier B.V. All rights reserved.  
  Address [Hochberg, Y.] Hebrew Univ Jerusalem, Racah Inst Phys, Jerusalem, Israel, Email: cgtully@Princeton.EDU  
  Corporate Author Thesis (up)  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000464490900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3978  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva