|
IDS collaboration(Llanos-Exposito, M. et al), Algora, A., & Nacher, E. (2025). Structure of 128Sn selectively populated in the β decay of the 128In ground state. Phys. Rev. C, 111(6), 064310–13pp.
Abstract: High-resolution gamma-ray spectroscopy and fast-timing methods were employed to study the excited structure of 128Sn, populated via the beta-decay chain of 128Cd -> 128In -> 128Sn. The experiment was performed by online mass separation at the ISOLDE facility at CERN, profiting from intense and pure Cd beams obtained by a temperature-controlled quartz transfer line combined with resonant laser ionization. An extended 128Sn level scheme populated in the beta – decay of the low-spin 128In isomer was constructed, adding a total of 81 new gamma-ray transitions and 30 new levels. Lifetimes of excited states were measured using time-delayed beta gamma (t) and gamma gamma (t) coincidences. The lifetime of the (4+) state was measured for the first time, making it possible to deduce the B(E 2; 4+ -> 2+) transition strength. The previously measured (5-) state was reassessed with improved statistics. Additionally, an upper limit for the lifetime of the state at 2378 keV was established. The derived reduced transition probabilities support a tentative spin-parity assignment of (4-) for this level. The experimental level scheme and transition probabilities are compared with available shell-model calculations.
|
|
|
R3B Collaboration(Benlliure, J. et al), Cortina-Gil, D., & Nacher, E. (2025). Fission studies using quasi-free NN scattering reactions in inverse kinematics. Nucl. Phys. A, 1063, 123173–5pp.
Abstract: The combined use of the inverse kinematics technique and the advanced detection setup R3B (Reactions with Relativistic Radioactive Beams) at GSI/FAIR provides unique opportunities to study the fission process. This approach provides access to the complete isotopic identification of the two fission fragments, the precise determination of their velocities and the measurement of the neutrons and gammas emitted in coincidence, for a wide range of unstable fissile nuclei. In addition, quasi-free NN scattering represents a surrogate reaction to induce fission, allowing the complete identification of the fissioning system in terms of isotopic composition and excitation energy. The manuscript describes the technical realisation of these experiments as well as the physics programme and some preliminary results.
|
|
|
IDS Collaboration(Olaizola, B. et al), Algora, A., & Nacher, E. (2025). The 76Cu conundrum remains unsolved. Phys. Lett. B, 866, 139551–8pp.
Abstract: Near the doubly-magic nucleus Ni-78 (Z = 28, N = 50), there has been a decades-long debate on the existence of a long-lived isomer in Cu-76. A recent mass measurement claimed to have settled the debate, by measuring the energy of the isomer and shedding light on the structure of the nucleus. In this work, we present new, more accurate, and precise values of the half-lives of the isomeric and ground states in Cu-76. Our findings suggest that both states have very similar half-lives, in the 600-700 ms range, in disagreement with the literature values, implying that they cannot be differentiated by their decay curves. These results raise more questions than they answer, reopening the debate and showing that the structures in Cu-76 are still not fully understood.
|
|
|
Zhang, G. et al, Algora, A., Nacher, E., Orrigo, S. E. A., Perez-Vidal, R. M., & Rubio, B. (2025). Approaching 100Sn: Structural evolution in 98,100Cd via lifetime measurements. Phys. Lett. B, 863, 139378–7pp.
Abstract: The lifetimes of low-lying excited states below the 8(+) seniority isomer were directly measured using fast timing detectors in the neutron-deficient isotopes Cd-98,Cd-100. This experiment was conducted with the DEcay SPECtroscopy (DESPEC) setup at GSI, where the ions of interest were produced via a fragmentation reaction and identified using the FRagment Separator (FRS) before being implanted in the AIDA active stopper system, and the gamma rays emitted during the de-excitation of isomeric states were detected by the LaBr3 FATIMA Array. The newly deduced values for the reduced transition probabilities were compared with shell-model calculations using different interactions and effective charges. The results indicate that, while Cd-98 aligns well with a seniority scheme description, in Cd-100 the transition strengths among low-lying states are not fully reproduced, and the nature of these states remains an open problem within the present theoretical description. Ultimately, a key element in the description of this region, crucial for nuclear physics and astrophysics, appears to be the proton-neutron term of the nuclear effective interaction.
|
|
|
Morfouace, P. et al, Benlliure, J., Cortina-Gil, D., & Nacher, E. (2025). An asymmetric fission island driven by shell effects in light fragments. Nature, 641, 339–344.
Abstract: Nuclear fission leads to the splitting of a nucleus into two fragments(1,2). Studying the distribution of the masses and charges of the fragments is essential for establishing the fission mechanisms and refining the theoretical models(3,4). It has value for our understanding of r-process nucleosynthesis(5,6), in which the fission of nuclei with extreme neutron-to-proton ratios is pivotal for determining astrophysical abundances and understanding the origin of the elements(7) and for energy applications(8,9). Although the asymmetric distribution of fragments is well understood for actinides (elements in the periodic table with atomic numbers from 89 to 103) based on shell effects(10), symmetric fission governs the scission process for lighter elements. However, unexpected asymmetric splits have been observed in neutron-deficient exotic nuclei(11), prompting extensive further investigations. Here we present measurements of the charge distributions of fission fragments for 100 exotic fissioning systems, 75 of which have never been measured, and establish a connection between the neutron-deficient sub-lead region and the well-understood actinide region. These new data comprehensively map the asymmetric fission island and provide clear evidence for the role played by the deformed Z = 36 proton shell of the light fragment in the fission of sub-lead nuclei. Our dataset will help constrain the fission models used to estimate the fission properties of nuclei with extreme neutron-to-proton ratios for which experimental data are unavailable.
|
|
|
IDS Collaboration(Lica, R. et al), Algora, A., & Nacher, E. (2025). Revealing the Nature of yrast States in Neutron-Rich Polonium Isotopes. Phys. Rev. Lett., 134(5), 052502–7pp.
Abstract: Polonium isotopes having two protons above the shell closure at Z = 82 show a wide variety of lowlying, high-spin isomeric states across the whole chain. The structure of neutron-deficient isotopes up to 210Po (N = 126) is well established as they are easily produced through various methods. However, there is not much information available for the neutron-rich counterparts for which only selective techniques can be used for their production. We report on the first fast-timing measurements of yrast states up to the 8+ level in 214,216,218Po isotopes produced in the beta- decay of 214,216,218Bi at ISOLDE, CERN. In particular, our new half-life value of 607(14) ps for the 8+1 state in 214Po is nearly 20 times shorter than the value available in the literature and comparable with the newly measured half-lives of 409(16) and 628(25) ps for the corresponding 8+1 states in 216,218Po, respectively. The measured B(E2; 8+1 -> 6+1 ) transition probability values follow an increasing trend relative to isotope mass, reaching a maximum for 216Po. The increase contradicts the previous claims of isomerism for the 8+ yrast states in neutron-rich 214Po and beyond. Together with the other measured yrast transitions, the B(E2) values provide a crucial test of the different theoretical approaches describing the underlying configurations of the yrast band. The new experimental results are compared to shell-model calculations using the KHPE and H 208 effective interactions and their pairing-modified versions, showing an increase in configuration mixing when moving toward the heavier isotopes.
|
|
|
R3B Collaboration(Ponnath, L. et al), Benlliure, J., Cortina-Gil, D., & Nacher, E. (2025). Precise measurement of nuclear interaction cross sections towards neutron-skin determination with R3B. Nucl. Phys. A, 1056, 123022–5pp.
Abstract: The (RB)-B-3 (Reactions with Relativistic Radioactive Beams) experiment as a major instrument of the NUSTAR collaboration for the research facility FAIR in Darmstadt is designed for kinematically complete studies of reactions with high-energy radioactive beams. Part of the broad physics program of (RB)-B-3 is to constrain the asymmetry term in the nuclear equation-of-state and hence improve the description of highly asymmetric nuclear matter (e.g., in neutron stars). For a precise determination of the neutron-skin thickness – an observable which is directly correlated with the symmetry energy in theoretical calculations – by measuring absolute fragmentation cross sections, it is essential to quantify the uncertainty and challenge the reaction model under stable conditions. During the successful FAIR Phase-0 campaign of (RB)-B-3, we precisely measured the energy dependence of total interaction cross sections in C-12+C-12 collisions, for a direct comparison with calculations based on the eikonal reaction theory.
|
|
|
IDS Collaboration(Clisu, C. et al), & Nacher, E. (2024). Observation of the J 7/2 low-spin states in 213Fr populated in the electron capture of the 1/2-ground state of 213Ra. Phys. Rev. C, 110(6), 064315–15pp.
Abstract: A detailed level scheme of 213Fr126 following the EC/beta+ decay of the 1/2- 213 Ra parent ground state was built in an experiment performed at the ISOLDE Decay Station, CERN. The fragmented total beta decay strength favours the direct population of several low-spin (J 7/2) excited states. The analysis of the gamma-singles spectrum and gamma-gamma coincidences allowed us to identify many new gamma-ray transitions and excited states in 213 Fr up to about 3.6 MeV excitation energy. The spins and parities of the newly established levels, on top of the (7/2-1 ) state, were mainly assigned based on the systematics of the N = 126 isotones and further compared with shell-model calculations. The level scheme displays a structural pattern, with several groups of states with negative parity, emerging from the well-defined, simple, pi ( h 59 / 2 ), pi ( h 4 9 / 2 f 17 / 2 ) configurations or from their configuration mixing. The strength of the E 2 transitions within the multiplets is compared with shell-model theoretical calculations performed with the KHPE and H 208 effective interactions. A new (3/2-) isomer with a half-life of 26(3) ns has been identified. An upper limit of 35 ps was determined for the half-life of the first excited state, 7/2-. The possibility of a mixed M 1 + E 2 character is discussed for the 7/2-1 -> 9/2-gs decay in 213 Fr, which leads to an l-forbidden nature of the pi f 7 / 2 -> pi h 9 / 2 transition.
|
|
|
Magro Hernandez, R. M., Muñoz-Noval, A., Briz, J. A., Murias, J. R., Espinosa-Rodríguez, A., Fraile, L. M., et al. (2024). Iodine-substituted hydroxyapatite nanoparticles and activation of derived ceramics for range verification in proton therapy. J. Mat. Chem. B, 12, 12030–12037.
Abstract: Osteosarcoma is a radioresistant cancer, and proton therapy is a promising radiation alternative for treating cancer with the advantage of a high dose concentration in the tumor area. In this work, we propose the use of iodine-substituted hydroxyapatite (IHAP) nanomaterials to use iodine (127I) as a proton radiation tracer, providing access to range verification studies in mineralized tissues. For this purpose, the nanomaterials were synthesized at four iodine concentrations via hydrothermal synthesis. The materials were characterized via different microstructural techniques to identify an optimal high iodine concentration and pure apatite phase nanomaterial. Finally, such pure IHAP powders were shaped and irradiated with proton beams of 6 and 10 MeV, and their activation was demonstrated through subsequent decay analysis. The materials could be integrated into phantom structures for the verification of doses and ranges of protons prior to animal testing and clinical proton therapy treatments of tumors located deep under combined soft and calcified tissues. Iodine-substituted hydroxyapatite nanomaterials were synthesised via hydrothermal process to use iodine (127I) as a proton radiation reporter with a view in hard tissue phantoms for proton therapy.
|
|
|
R3B Collaboration(Ponnath, L. et al), & Nacher, E. (2024). Measurement of nuclear interaction cross sections towards neutron-skin thickness determination. Phys. Lett. B, 855, 138780–6pp.
Abstract: The accuracy of reaction theories used to extract properties of exotic nuclei from scattering experiments is often unknown or not quantified, but of utmost importance when, e.g., constraining the equation of state of asymmetric nuclear matter from observables as the neutron-skin thickness. In order to test the Glauber multiple-scattering model, the total interaction cross section of C-12 on carbon targets was measured at initial beam energies of 400, 550, 650, 800, and 1000 MeV/nucleon. The measurements were performed during the first experiment of the newly constructed (RB)-B-3 (Reaction with Relativistic Radioactive Beams) experiment after the start of FAIR Phase-0 at the GSI/FAIR facility with beam energies of 400, 550, 650, 800, and 1000 MeV/nucleon. The combination of the large-acceptance dipole magnet GLAD and a newly designed and highly efficient Time-of-Flight detector enabled a precise transmission measurement with several target thicknesses for each initial beam energy with an experimental uncertainty of +/- 0.4%. A comparison with the Glauber model revealed a discrepancy of around 3.1% at higher beam energies, which will serve as a crucial baseline for the model-dependent uncertainty in future fragmentation experiments.
|
|