Mandal, S., Miranda, O. G., Sanchez Garcia, G., Valle, J. W. F., & Xu, X. J. (2022). High-energy colliders as a probe of neutrino properties. Phys. Lett. B, 829, 137110–5pp.
Abstract: The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavor non-conservation in nature, rather than low-energy intensity frontier experiments.
|
Batra, A., Bharadwaj, P., Mandal, S., Srivastava, R., & Valle, J. W. F. (2022). W-mass anomaly in the simplest linear seesaw mechanism. Phys. Lett. B, 834, 137408–12pp.
Abstract: The simplest linear seesaw mechanism can accommodate the new CDF-II W mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons.
|
Batra, A., Bharadwaj, P., Mandal, S., Srivastava, R., & Valle, J. W. F. (2025). Large lepton number violation at colliders: Predictions from the minimal linear seesaw mechanism. Phys. Lett. B, 860, 139204–11pp.
Abstract: Small neutrino masses can be sourced by a tiny vacuum expectation value of a leptophilic Higgs doublet, and mediated by Quasi-Dirac heavy neutrinos. In such simplest linear seesaw picture the neutrino mass mediators can be accessible to colliders. We describe novel charged Higgs and heavy neutrino production mechanisms that can be sizeable at + – , -, , or muon colliders and discuss some of the associated signatures. The oscillation length of the heavy neutrino mediators is directly related to the light neutrino mass ordering. Moreover, lepton number violation can be large despite the smallness of neutrino masses, and may shed light on the Majorana nature of neutrinos and the significance of basic symmetries in weak interaction.
|
Ding, G. J., & Valle, J. W. F. (2025). The symmetry approach to quark and lepton masses and mixing. Phys. Rep., 1109, 1–105.
Abstract: The Standard Model lacks an organizing principle to describe quark and lepton “flavours”. Neutrino oscillation experiments show that leptons mix very differently from quarks, adding a major challenge to the flavour puzzle. We briefly sketch the seesaw and the dark-matter-mediated “scotogenic” neutrino mass generation approaches. We discuss the limitations of popular neutrino mixing patterns and examine the possibility that they arise from symmetry, giving a bottom-up approach to residual flavour and CP symmetries. We show how such family and/or CP symmetries can yield novel, viable and predictive mixing patterns. Model-independent ways to predict lepton mixing and neutrino mass sum rules are reviewed. We also discuss UV-complete flavour theories in four and more space-time dimensions. As benchmark examples we present an A4 scotogenic construction with trimaximal mixing pattern TM2 and another with S4 flavour symmetry and generalized CP symmetry. Higher-dimensional flavour completions are also briefly discussed, such as 5-D warped flavordynamics with a T ' symmetry yielding a TM1 mixing pattern, detectable neutrinoless double beta decay rates and a very good global fit of flavour observables. We also mention 6-D orbifolds as a way to fix the structure of the 4-D family symmetry. We give a scotogenic benchmark orbifold model predicting the "golden'' quark-lepton mass relation, stringent neutrino oscillation parameter regions, and an excellent global flavour fit, including quark observables. Finally, we discuss promising recent progress in tackling the flavour issue through the use of modular symmetries.
|
Batra, A., Câmara, H. B., Joaquim, F. R., Nath, N., Srivastava, R., & Valle, J. W. F. (2025). Axion framework with color-mediated Dirac neutrino masses. Phys. Lett. B, 868, 139629–11pp.
Abstract: We propose a KSVZ-type axion framework in which vector-like quarks (VLQ) and colored scalars generate Dirac neutrino masses radiatively. The global Peccei-Quinn symmetry (under which the exotic fermions are charged) addresses the strong CP problem and ensures the Dirac nature of neutrinos. The axion also accounts for the observed cosmological dark matter. We systematically explore all viable VLQ representations. Depending on the specific scenario, the framework predicts distinct axion-to-photon couplings, testable through haloscope and helioscope experiments, as well as potentially significant flavor-violating quark-axion interactions.
|
de Campos, F., Eboli, O. J. P., Hirsch, M., Magro, M. B., Porod, W., Restrepo, D., et al. (2010). Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider. Phys. Rev. D, 82(7), 075002–8pp.
Abstract: The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
|
Esteves, J. N., Joaquim, F. R., Joshipura, A. S., Romao, J. C., Tortola, M., & Valle, J. W. F. (2010). A(4)-based neutrino masses with Majoron decaying dark matter. Phys. Rev. D, 82(7), 073008–8pp.
Abstract: We propose an A(4) flavor-symmetric SU(3) circle times SU(2) circle times U(1) seesaw model where lepton number is broken spontaneously. A consistent two-zero texture pattern of neutrino masses and mixing emerges from the interplay of type-I and type-II seesaw contributions, with important phenomenological predictions. We show that, if the Majoron becomes massive, such seesaw scenario provides a viable candidate for decaying dark matter, consistent with cosmic microwave background lifetime constraints that follow from current WMAP observations. We also calculate the subleading one-loop-induced decay into photons which leads to a monoenergetic emission line that may be observed in future x-ray missions such as Xenia.
|
Escrihuela, F. J., Tortola, M., Valle, J. W. F., & Miranda, O. G. (2011). Global constraints on muon-neutrino nonstandard interactions. Phys. Rev. D, 83(9), 093002–8pp.
Abstract: The search for new interactions of neutrinos beyond those of the standard model may help to elucidate the mechanism responsible for neutrino masses. Here, we combine existing accelerator neutrino data with restrictions coming from a recent atmospheric neutrino data analysis in order to lift parameter degeneracies and improve limits on new interactions of muon neutrinos with quarks. In particular, we reconsider the results of the E-815 experiment at Fermilab (NuTeV) in view of a new evaluation of its systematic uncertainties. We find that, although constraints for muon neutrinos are better than those applicable to tau or electron neutrinos, they lie at the few X 10(-2) level, not as strong as previously believed. We briefly discuss prospects for further improvement.
|
Bazzocchi, F., Cerdeño, D. G., Muñoz, C., & Valle, J. W. F. (2010). Calculable inverse-seesaw neutrino masses in supersymmetry. Phys. Rev. D, 81(5), 051701–5pp.
Abstract: We provide a scenario where naturally small and calculable neutrino masses arise from a supersymmetry-breaking renormalization-group-induced vacuum expectation value. The construction consists of an extended version of the next-to-minimal supersymmetric standard model and the mechanism is illustrated for a universal choice of the soft supersymmetry-breaking parameters. The lightest supersymmetric particle can be an isosinglet scalar neutrino state, potentially viable as WIMP dark matter through its Higgs new boson coupling. The scenario leads to a plethora of new phenomenological implications at accelerators including the Large Hadron Collider.
|
Hirsch, M., Morisi, S., Peinado, E., & Valle, J. W. F. (2010). Discrete dark matter. Phys. Rev. D, 82(11), 116003–5pp.
Abstract: We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z(2) subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while theta(13) = 0 gives no CP violation in neutrino oscillations.
|