|   | 
Details
   web
Records
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Measurement of the Xe-136 two-neutrino double-beta-decay half-life via direct background subtraction in NEXT Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 105 Issue 5 Pages 055501 - 8pp
Keywords
Abstract We report a measurement of the half-life of the Xe-136 two-neutrino double-beta decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe-136-enriched and Xe-136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34(-0.46)(+0.80) (stat)(-0.17)(+0.30) (sys) x 10(21) yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-beta-decay searches.
Address [Novella, P.; Sorel, M.; Uson, A.; Carcel, S.; Carrion, J., V; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Vidal, J. Munoz; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: auson@ific.uv.es
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000810927800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5263
Permanent link to this record
 

 
Author Pompa, F.; Capozzi, F.; Mena, O.; Sorel, M.
Title Absolute nu Mass Measurement with the DUNE Experiment Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 129 Issue 12 Pages 121802 - 6pp
Keywords
Abstract Time of flight delay in the supernova neutrino signal offers a unique tool to set model-independent constraints on the absolute neutrino mass. The presence of a sharp time structure during a first emission phase, the so-called neutronization burst in the electron neutrino flavor time distribution, makes this channel a very powerful one. Large liquid argon underground detectors will provide precision measurements of the time dependence of the electron neutrino fluxes. We derive here a new v mass sensitivity attainable at the future DUNE far detector from a future supernova collapse in our galactic neighborhood, finding a sub-eV reach under favorable scenarios. These values are competitive with those expected for laboratory direct neutrino mass searches.
Address [Pompa, Federica; Capozzi, Francesco; Mena, Olga; Sorel, Michel] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: federica.pompa@ific.uv.es;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000861178800003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5366
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F.
Title Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 9 Pages 092012 - 22pp
Keywords
Abstract Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001010953400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5588
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 11 Pages 112012 - 25pp
Keywords
Abstract A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001063367400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5669
Permanent link to this record
 

 
Author NEXT Collaboration (Jones, B.J.P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1039 Issue Pages 167000 - 19pp
Keywords RF carpets; Ion transport; Neutrinoless double beta decay; Barium tagging
Abstract Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: ben.jones@uta.edu
Corporate Author Thesis
Publisher (up) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000861747900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5372
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P.
Title The T2K experiment Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 659 Issue 1 Pages 106-135
Keywords Neutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-Kamiokande
Abstract The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.
Address [Beznosko, D.; Gilje, K.; Hignight, J.; Imber, J.; Jung, C. K.; Le, P. T.; Lopez, G. D.; Malafis, C. J.; McGrew, C.; Nagashima, G.; Nelson, B.; Paul, P.; Ramos, K.; Schmidt, J.; Steffens, J.; Tadepalli, A. S.; Taylor, I. J.; Toki, W.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA, Email: chang.jung@stonybrook.edu
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000297826100016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 832
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P.
Title Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 211-223
Keywords Neutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiber
Abstract Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision. (C) 2012 Elsevier B.V. All rights reserved.
Address [Gomi, S.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Kawamuko, H.; Kikawa, T.; Kubo, H.; Kubota, J.; Kurimoto, Y.; Litchfield, R. P.; Matsuoka, K.; Minamino, A.; Murakami, A.; Nagai, N.; Nakaya, T.; Nitta, K.; Nobuhara, T.; Otani, M.; Suzuki, K.; Taguchi, M.; Takahashi, S.; Yamauchi, T.] Kyoto Univ, Dept Phys, Kyoto 606, Japan, Email: masashi.o@scphys.kyoto-u.ac.jp
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1239
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 708 Issue Pages 101-114
Keywords Xenon; Energy resolution; High-pressure; TPC; Electroluminescence; Neutrinoless double beta decay
Abstract We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 Xe-136 neutrino-less double beta decay (0 nu beta beta) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of similar to 1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and similar to 5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7-20 better than that of the current leading 0 nu beta beta experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0 nu beta beta search.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: agoldschmidt@lbl.gov
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000316192300015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1369
Permanent link to this record
 

 
Author MiniBooNE Collaboration (Aguilar-Arevalo, A.A. et al); Sorel, M.
Title Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 718 Issue 4-5 Pages 1303-1308
Keywords MiniBooNE; Neutrino oscillation; Lorentz violation
Abstract The sidereal time dependence of MiniBooNE nu(e) and (nu) over bar (e) appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov (K-S) test shows both the nu(e) and (nu) over bar (e) appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the nu(e) appearance data prefer a sidereal time-independent solution, and the (nu) over bar (e) appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10(-20) GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for nu(mu) -> nu(e) and (nu) over bar (mu) -> (nu) over bar (e) oscillations. The fit values and limits of combinations of SME coefficients are provided.
Address [Dharmapalan, R.; Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA, Email: katori@fnal.gov
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000314554300015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1390
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Ionization and scintillation of nuclear recoils in gaseous xenon Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 793 Issue Pages 62-74
Keywords Dark matter; High pressure xenon gas; WIMP; Neutrino less double beta decay; Nuclear recoils
Abstract Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
Address [Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.] LBNL, Berkeley, CA 94720 USA, Email: jrenner@lbl.gov
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000355774500011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2247
Permanent link to this record