|   | 
Details
   web
Records
Author NEXT Collaboration (McDonald, A.D. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Rodriguez, J.; Simon, A.; Sofka, C.; Sorel, M.; Torrent, J.; Yahlali, N.
Title Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 120 Issue 13 Pages 132504 - 6pp
Keywords
Abstract A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (similar to 2 nm), and detected with a statistical significance of 12.9 sigma over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
Address [McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Monrabal, F.; Rogers, L.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: austin.mcdonald@uta.edu;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000428243400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3538
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Neutral Bremsstrahlung Emission in Xenon Unveiled Type Journal Article
Year 2022 Publication Physical Review X Abbreviated Journal Phys. Rev. X
Volume 12 Issue 2 Pages 021005 - 23pp
Keywords
Abstract We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10(-2) photon/e(-) cm(-1) bar(-1) at pressure-reduced electric field values of 50 V cm(-1) bar(-1) to above 3 x 10(-1) photon/e(-) cm(-1) bar(-1) at 500 V cm(-1) bar(-1). Above 1.5 kV cm(-1) bar(-1), values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around 1 photon/e(-) cm(-1) bar(-1), which is about 2 orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the "buffer region, where keeping the electric field below the electroluminescence threshold does not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path toward obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to 20-50 photons/e(-) cm(-1).
Address [Henriques, C. A. O.; Teixeira, J. M. R.; Monteiro, C. M. B.; Fernandes, A. F. M.; Fernandes, L. M. P.; Freitas, E. D. C.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, ILIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: henriques@uc.pt;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2160-3308 ISBN Medium
Area Expedition Conference
Notes WOS:000792590100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5220
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Measurement of the Xe-136 two-neutrino double-beta-decay half-life via direct background subtraction in NEXT Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 105 Issue 5 Pages 055501 - 8pp
Keywords
Abstract We report a measurement of the half-life of the Xe-136 two-neutrino double-beta decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe-136-enriched and Xe-136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34(-0.46)(+0.80) (stat)(-0.17)(+0.30) (sys) x 10(21) yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-beta-decay searches.
Address [Novella, P.; Sorel, M.; Uson, A.; Carcel, S.; Carrion, J., V; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Vidal, J. Munoz; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: auson@ific.uv.es
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000810927800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5263
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Veloso, J.F.C.A.; Yahlali, N.
Title Simulation results of a real-time in water tritium monitor Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 982 Issue Pages 164555 - 7pp
Keywords Tritium in water; Real-time monitor; Nuclear power plant; Environmental safety
Abstract In this work we present simulation results for a modular tritium in-water real-time monitor. The system allows for scalability in order to achieve the required sensitivity. The modules are composed by 340 uncladed scintillating fibers immersed in water and 2 photosensors in coincidence for light readout. Light yield and Birks' coefficient uncertainties for low energy beta particles is discussed. A study of the detection efficiency according to the fiber length is presented. Discussion on the system requirements and background mitigation for a device with sensitivity of 100 Bq/L, required to comply with the European directive 2013/51/Euratom, is presented. Due to the low energetic beta emission from tritium a detection efficiency close to 3.3% was calculated for a single 2 mm round fiber.
Address [Azevedo, C. D. R.; Veloso, J. F. C. A.] Univ Aveiro, Dept Phys, I3N, Campus Univ Santiago, P-3810193 Aveiro, Portugal, Email: cdazevedo@ua.pt
Corporate Author Thesis
Publisher (up) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581805300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4578
Permanent link to this record
 

 
Author NEXT Collaboration (Jones, B.J.P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1039 Issue Pages 167000 - 19pp
Keywords RF carpets; Ion transport; Neutrinoless double beta decay; Barium tagging
Abstract Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: ben.jones@uta.edu
Corporate Author Thesis
Publisher (up) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000861747900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5372
Permanent link to this record