toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Light ring images of double photon spheres in black hole and wormhole spacetimes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 084057 - 16pp  
  Keywords  
  Abstract The silhouette of a black hole having a critical curve (an unstable bound photon orbit) when illuminated by an optically thin accretion disk whose emission is confined to the equatorial plane shows a distinctive central brightness depression (the shadow) whose outer edge consists of a series of strongly lensed, selfsimilar rings superimposed with the disk???s direct emission. While the size and shape of the critical curve depend only on the background geometry, the pattern of bright and dark regions (including the size and depth of the shadow itself) in the image is strongly influenced by the (astro)physics of the accretion disk. This aspect makes it difficult to extract clean and clear observational discriminators between the Kerr black hole and other compact objects. In the presence of a second critical curve, however, observational differences become apparent. In this work we shall consider some spherically symmetric black hole and wormhole geometries characterized by the presence of a second critical curve, via a uniparametric family of extensions of the Schwarzschild metric. By assuming three toy models of geometrically thin accretion disks, we show the presence of additional light rings in the intermediate region between the two critical curves. The observation of such rings could represent a compelling evidence for the existence of black hole mimickers having multiple critical curves.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810908800018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5261  
Permanent link to this record
 

 
Author Afonso, V.I.; Bejarano, C.; Ferraro, R.; Olmo, G.J. url  doi
openurl 
  Title Determinantal Born-Infeld coupling of gravity and electromagnetism Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 084067 - 11pp  
  Keywords  
  Abstract We study a Born-Infeld inspired model of gravity and electromagnetism in which both types of fields are treated on an equal footing via a determinantal approach in a metric-aft me formulation. Though this formulation is a priori in conflict with the postulates of metric theories of gravity, we find that the resulting equations can also be obtained from an action combining the Einstein-Hilbert action with a minimally coupled nonlinear electrodynamics. As an example, the dynamics is solved for the charged static black hole.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810510200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5273  
Permanent link to this record
 

 
Author Alvarez-Ortega, D.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Eternal versus singular observers in interacting dark-energy-dark-matter models Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 2 Pages 023523 - 14pp  
  Keywords  
  Abstract Interacting dark-energy-dark-matter models have been widely analyzed in the literature in an attempt to find traces of new physics beyond the usual cosmological (Lambda CDM) models. Such a coupling between both dark components is usually introduced in a phenomenological way through a flux in the continuity equation. However, models with a Lagrangian formulation are also possible. A class of the latter assumes a conformal/disformal coupling that leads to a fifth force on the dark-matter component, which consequently does not follow the same geodesics as the other (baryonic, radiation, and dark-energy) matter sources. Here we analyze how the usual cosmological singularities of the standard matter frame are seen from the dark-matter one, concluding that by choosing an appropriate coupling, dark-matter observers will see no singularities but a non beginning, non ending universe. By considering two simple phenomenological models we show that such a type of coupling can fit observational data as well as the usual Lambda CDM model.  
  Address [Alvarez-Ortega, Diego] Inst Fis Cantabria CSIC UC, Avda Castros S-N, Santander 39005, Spain, Email: diego.alvarezo@alumnos.unican.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000842768300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5345  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Multiring images of thin accretion disk of a regular naked compact object Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 4 Pages 044070 - 13pp  
  Keywords  
  Abstract We discuss the importance of multiring images in the optical appearance of a horizonless spherically symmetric compact object, when illuminated by an optically thin accretion disk. Such an object corresponds to a subcase of an analytically tractable extension of the Kerr solution dubbed as the “eye of the storm” by Simpson and Visser in [J. Cosmol. Astropart. Phys. 03 (2022) 011], which merits in removing curvature singularities via an asymptotically Minkowski core, while harboring both a critical curve and an infinite potential barrier at the center for null geodesics. This multiring structure is induced by light rays winding several times around the object, and whose luminosity is significantly boosted as compared to the Schwarzschild solution by the modified shape of the potential. Using three toy profiles for the emission of an infinitely thin disk, truncated at its inner edge (taking its maximum value there) and having different decays with the distance, we discuss the image created by up to eight rings superimposed on top of the direct emission of the disk as its edge is moved closer to the center of the object. Our results point to the existence of multiring images with a non-negligible luminosity in shadow observations when one allows for the existence of other compact objects in the cosmic zoo beyond the Schwarzschild solution. Such multiring images could be detectable within the future projects on very long baseline interferometry.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, IPARCOS, Madrid 28040, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000850772800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5352  
Permanent link to this record
 

 
Author Silva, J.E.G.; Maluf, R.V.; Olmo, G.J.; Almeida, C.A.S. url  doi
openurl 
  Title Braneworlds in f(Q) gravity Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 2 Pages 024033 - 15pp  
  Keywords  
  Abstract We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature. Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic nonmetricity invariant Q controls the brane width while keeping the shape of the energy density. By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling between a bulk fermion field and the nonmetricity invariant Q. Such geometric coupling leads to a massless chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.  
  Address [Silva, J. E. G.] Univ Fed do Cariri UFCA, Ave Tenente Raimundo Rocha,Cidade Universitaria, BR-63048080 Juazeiro do Norte, CE, Brazil, Email: euclides.silva@ufca.edu.br;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000880673200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5410  
Permanent link to this record
 

 
Author Magalhaes, R.B.; Maso-Ferrando, A.; Olmo, G.J.; Crispino, L.C.B. url  doi
openurl 
  Title Asymmetric wormholes in Palatini f (R) gravity: Energy conditions, absorption, and quasibound states Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 2 Pages 024063 - 20pp  
  Keywords  
  Abstract We investigate the scalar absorption spectrum of wormhole solutions constructed via the recently developed thin-shell formalism for Palatini f(R) gravity. Such wormholes come from the matching of two Reissner-Nordstrom spacetimes at a timelike hypersurface (shell), which, according to the junction conditions in Palatini f(R), can be stable and have either positive or negative energy density. In particular, we identified a new physically interesting configuration made out of two overcharged Reissner-Nordstrom spacetimes, whose absorption profile departs from that of black holes and other previously considered wormholes in the whole range of frequencies. Unlike in symmetric wormhole solutions, the asymmetry of the effective potential causes the dilution of the resonances associated to the quasibound states for the high -frequency regime. Therefore, slight asymmetries in wormhole space-times could have a dramatic impact on the observable features associated to resonant states.  
  Address [Magalhaes, Renan B.; Crispino, Luis C. B.] Univ Fed, Programa Pos Graduacao Fis, BR-66075110 Belem, PA, Brazil, Email: renan.batalha@ext.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001055237800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5629  
Permanent link to this record
 

 
Author Dias da Silva, L.F.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Photon rings as tests for alternative spherically symmetric geometries with thin accretion disks Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 084055 - 18pp  
  Keywords  
  Abstract The imaging by the Event Horizon Telescope (EHT) of the supermassive central objects at the heart of the M87 and Milky Way (Sgr A*) galaxies, has marked the first step into peering at the photon rings and central brightness depression that characterize the optical appearance of black holes surrounded by an accretion disk. Recently, Vagnozzi et al. [arXiv:2205.07787] used the claim by the EHT that the size of the shadow of Sgr A* can be inferred by calibrated measurements of the bright ring enclosing it, to constrain a large number of spherically symmetric space-time geometries. In this work we use this result to study some features of the first and second photon rings of a restricted pool of such geometries in thin accretion disk settings. The emission profile of the latter is described by calling upon three analytic samples belonging to the family introduced by Gralla, Lupsasca, and Marrone, in order to characterize such photon rings using the Lyapunov exponent of nearly bound orbits and discuss its correlation with the luminosity extinction rate between the first and second photon rings. We finally elaborate on the chances of using such photon rings as observational discriminators of alternative black hole geometries using very long baseline interferometry.  
  Address [Dias da Silva, Luis F.; Lobo, Francisco S. N.] Univ Lisbon, Inst Astrofis & Ciencias Espaco, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal, Email: fc53497@alunos.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001093442700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5779  
Permanent link to this record
 

 
Author Maluf, R.V.; Olmo, G.J. url  doi
openurl 
  Title Vacuum polarization and induced Maxwell and Kalb-Ramond effective action in very special relativity Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 9 Pages 095022 - 13pp  
  Keywords  
  Abstract This work investigates the implications of very special relativity (VSR) on the calculation of vacuum polarization for fermions in the presence of Maxwell and Kalb-Ramond gauge fields in four-dimensional spacetime. We derive the SIM(2)-covariant gauge theory associated with an Abelian antisymmetric twotensor and its corresponding field strength. We demonstrate that the free VSR-Kalb-Ramond electrodynamics is equivalent to a massive scalar field with a single polarization. Furthermore, we determine an explicit expression for the effective action involving Maxwell and Kalb-Ramond fields due to fermionic vacuum polarization at one-loop order. The quantum corrections generate divergences free of nonlocal terms only in the VSR-Maxwell sector. At the same time, we observe UV/IR mixing divergences due to the entanglement of VSR-nonlocal effects with quantum higher-derivative terms for the Kalb-Ramond field. However, in the lower energy limit, the effective action can be renormalized like in the Lorentz invariant case.  
  Address [Maluf, Roberto, V; Olmo, Gonzalo J.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: r.v.maluf@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001111823400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5863  
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J. url  doi
openurl 
  Title Numerical evolutions of boson stars in Palatini f(R) gravity Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 4 Pages 044042 - 14pp  
  Keywords  
  Abstract We investigate the time evolution of spherically symmetric boson stars in Palatini f(R) gravity through numerical relativity computations. Employing a novel approach that establishes a correspondence between modified gravity with scalar matter and general relativity with modified scalar matter, we are able to use the techniques of numerical relativity to simulate these systems. Specifically, we focus on the quadratic theory f(R) = R + xi R2 and compare the obtained solutions with those in general relativity, exploring both positive and negative values of the coupling parameter xi. Our findings reveal that boson stars in Palatini f(R) gravity exhibit both stable and unstable evolutions. The latter give rise to three distinct scenarios: migration toward a stable configuration, complete dispersion, and gravitational collapse leading to the formation of a baby universe structure.  
  Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.maso@uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001186268100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6035  
Permanent link to this record
 

 
Author Bejarano, C.; Delhom, A.; Jimenez-Cano, A.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geometric inequivalence of metric and Palatini formulations of General Relativity Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages 135275 - 4pp  
  Keywords  
  Abstract Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta μnu R alpha beta μnu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.  
  Address [Bejarano, Cecilia] UBA, CONICET, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva