Montani, G., De Angelis, M., Bombacigno, F., & Carlevaro, N. (2024). Metric f(R) gravity with dynamical dark energy as a scenario for the Hubble tension. Mon. Not. Roy. Astron. Soc., 527, L156–L161.
Abstract: We introduce a theoretical framework to interpret the Hubble tension, based on the combination of a metric f(R) gravity with a dynamical dark energy contribution. The modified gravity provides the non-minimally coupled scalar field responsible for the proper scaling of the Hubble constant, in order to accommodate for the local SNIa pantheon+ data and Planck measurements. The dynamical dark energy source, which exhibits a phantom divide line separating the low redshift quintessence regime (−1 < w < −1/3) from the phantom contribution (w < −1) in the early Universe, guarantees the absence of tachyonic instabilities at low redshift. The resulting H0(z) profile rapidly approaches the Planck value, with a plateau behaviour for z ≳ 5. In this scenario, the Hubble tension emerges as a low redshift effect, which can be in principle tested by comparing SNIa predictions with far sources, like QUASARS and gamma ray bursts.
|
Barenboim, G., Del Debbio, L., Hirn, J., & Sanz, V. (2024). Exploring how a generative AI interprets music. Neural Comput. Appl., 36, 17007–17022.
Abstract: We aim to investigate how closely neural networks (NNs) mimic human thinking. As a step in this direction, we study the behavior of artificial neuron(s) that fire most when the input data score high on some specific emergent concepts. In this paper, we focus on music, where the emergent concepts are those of rhythm, pitch and melody as commonly used by humans. As a black box to pry open, we focus on Google’s MusicVAE, a pre-trained NN that handles music tracks by encoding them in terms of 512 latent variables. We show that several hundreds of these latent variables are “irrelevant” in the sense that can be set to zero with minimal impact on the reconstruction accuracy. The remaining few dozens of latent variables can be sorted by order of relevance by comparing their variance. We show that the first few most relevant variables, and only those, correlate highly with dozens of human-defined measures that describe rhythm and pitch in music pieces, thereby efficiently encapsulating many of these human-understandable concepts in a few nonlinear variables.
|
Martin-Luna, P., Bonatto, A., Bontoiu, C., Xia, G., & Resta-Lopez, J. (2024). Plasmonic excitations in double-walled carbon nanotubes. Results Phys., 60, 107698–11pp.
Abstract: The interactions of charged particles moving paraxially in multi-walled carbon nanotubes (MWCNTs) may excite electromagnetic modes. This wake effect has recently been proposed as a potential novel method of short-wavelength high-gradient particle acceleration. In this work, the excitation of wakefields in double-walled carbon nanotubes (DWCNTs) is studied by means of the linearized hydrodynamic theory. General expressions have been derived for the excited longitudinal and transverse wakefields and related to the resonant wavenumbers which can be obtained from the dispersion relation. In the absence of friction, the stopping power of the wakefield driver, modelled here as a charged macroparticle, can be written solely as a function of these resonant wavenumbers. The dependencies of the wakefields on the radii of the DWCNT and the driving velocity have been studied. DWCNTs with inter-wall distances much smaller than the internal radius may be a potential option to obtain higher wakefields for particle acceleration compared to single-walled carbon nanotubes (SWCNTs).
|
Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Pedraza, L. K., et al. (2024). A rapid method for prediction of the non-resonant ultra-fast multipactor regime in high gradient RF accelerating structures. Results Phys., 64, 107921–9pp.
Abstract: The purpose of this work is to present an analytical method that allows to estimate in an approximate and fast way the presence of the non-resonant and ultra-fast multipactor effect in RF accelerating structures in the presence of high gradient electromagnetic fields. This single-surface multipactor regime, which has been little studied in the scientific literature, is characterised by appearing only under conditions of very strong RF electric fields (of the order of tens or hundreds of MV/m), where it is predominant over other types of single- or dual-surface resonance described in classical multipactor theory. This type of multipactor causes a rapid growth of the electron population and poses a serious drawback in the operation of RF accelerator components operating under high gradient conditions. Specifically, in dielectric-assist accelerating structures (DAA) it has been experimentally found that the presence of multipactor limits the maximum operating gradient of these components due to a significant increase in the reflected power due to the discharge, being this phenomenon the main problem to overcome. In a previous work, we found and described in detail by means of numerical simulations the presence of this non-resonant and ultra-fast multipactor regime in a DAA structure design for hadrontherapy. Here we aim to present a simple and fast method to predict the presence of this non-resonant and ultra-fast multipactor regime in RF accelerator structures with cylindrical revolution symmetry around the acceleration axis. This method is especially useful in the design stages of accelerating structures as it provides much faster results than numerical simulations of the multipactor, with quite good accuracy in a wide range of cases as shown in this paper.
|
DUNE Collaboration(Abud, A. A. et al), Amar Es-Sghir, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). Performance of a modular ton-scale pixel-readout liquid argon time projection chamber. Instruments, 8, 41–45pp.
Abstract: The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations.
|
Richard, J. M., Valcarce, A., & Vijande, J. (2020). Hall-Post inequalities: Review and application to molecules and tetraquarks. Ann. Phys., 412, 168009–32pp.
Abstract: A review is presented of the Hall-Post inequalities that give lower-bounds to the ground-state energy of quantum systems in terms of energies of smaller systems. New applications are given for systems experiencing both a static source and inner interactions, as well as for hydrogen-like molecules and for tetraquarks in some quark models. In the latter case, the Hall-Post inequalities constrain the possibility of deeply-bound exotic mesons below the threshold for dissociation into two quark-antiquark mesons. We also emphasize the usefulness of the Hall-Post bounds in terms of 3-body energies when some 2-body subsystems are ill defined or do not support any bound state.
|
Liang, J., Singh, B., McCutchan, E. A., Dillmann, I., Birch, M., Sonzogni, A. A., et al. (2020). Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for Z > 28 Precursors. Nucl. Data Sheets, 168, 1–116.
Abstract: We present a compilation and evaluation of experimental beta-delayed neutron emission probabilities (P-n) and half-lives (T-1/2) for known or potential beta-delayed neutron precursors with atomic number Z > 28 (Cu-73 – Fr-233). This article includes the recommended values of both of these quantities, together with a compilation of experimental measurements when available. Some notable cases, as well as proposed standards for beta-delayed neutron measurements are also discussed. Evaluated data has also been compared to systematics using three different approaches. The literature cut-off date for this work is August 15, 2020.
|
Dimitriou, P. et al, Tain, J. L., & Algora, A. (2021). Development of a Reference Database for Beta-Delayed Neutron Emission. Nucl. Data Sheets, 173, 144–238.
Abstract: Beta-delayed neutron emission is important for nuclear structure and astrophysics as well as for reactor applications. Significant advances in nuclear experimental techniques in the past two decades have led to a wealth of new measurements that remain to be incorporated in the databases. We report on a coordinated effort to compile and evaluate all the available beta-delayed neutron emission data. The different measurement techniques have been assessed and the data have been compared with semi-microscopic and microscopic-macroscopic models. The new microscopic database has been tested against aggregate total delayed neutron yields, time-dependent group parameters in 6-and 8-group re-presentation, and aggregate delayed neutron spectra. New recommendations of macroscopic delayed-neutron data for fissile materials of interest to applications are also presented.
|
Carrasco-Ribelles, L. A., Pardo-Mas, J. R., Tortajada, S., Saez, C., Valdivieso, B., & Garcia-Gomez, J. M. (2021). Predicting morbidity by local similarities in multi-scale patient trajectories. J. Biomed. Inform., 120, 103837–9pp.
Abstract: Patient Trajectories (PTs) are a method of representing the temporal evolution of patients. They can include information from different sources and be used in socio-medical or clinical domains. PTs have generally been used to generate and study the most common trajectories in, for instance, the development of a disease. On the other hand, healthcare predictive models generally rely on static snapshots of patient information. Only a few works about prediction in healthcare have been found that use PTs, and therefore benefit from their temporal dimension. All of them, however, have used PTs created from single-source information. Therefore, the use of longitudinal multi-scale data to build PTs and use them to obtain predictions about health conditions is yet to be explored. Our hypothesis is that local similarities on small chunks of PTs can identify similar patients concerning their future morbidities. The objectives of this work are (1) to develop a methodology to identify local similarities between PTs before the occurrence of morbidities to predict these on new query individuals; and (2) to validate this methodology on risk prediction of cardiovascular diseases (CVD) occurrence in patients with diabetes. We have proposed a novel formal definition of PTs based on sequences of longitudinal multi-scale data. Moreover, a dynamic programming methodology to identify local alignments on PTs for predicting future morbidities is proposed. Both the proposed methodology for PT definition and the alignment algorithm are generic to be applied on any clinical domain. We validated this solution for predicting CVD in patients with diabetes and we achieved a precision of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the proposed solution in the diabetes use case can result of utmost utility to secondary screening.
|
Fanchiotti, H., Garcia Canal, C. A., Mayosky, M., Veiga, A., & Vento, V. (2022). Measuring the Hannay geometric phase. Am. J. Phys., 90(6), 430–435.
Abstract: The Hannay geometric phase is the classical analog of the well-known Berry phase. Its most familiar example is the effect of the latitude lambda on the motion of a Foucault pendulum. We describe an electronic network whose behavior is exactly equivalent to that of the pendulum. The circuit can be constructed from off-the-shelf components using two matched transconductance amplifiers that comprise a gyrator to introduce the non-reciprocal behavior needed to mimic the pendulum. One may precisely measure the dependence of the Hannay phase on lambda by circuit simulation and by laboratory measurements on a constructed circuit.
|