De Romeri, V., Giunti, C., Stuttard, T., & Ternes, C. A. (2023). Neutrino oscillation bounds on quantum decoherence. J. High Energy Phys., 09(9), 097–24pp.
Abstract: We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.
|
Adolf, P., Hirsch, M., & Päs, H. (2023). Radiative neutrino masses and the Cohen-Kaplan-Nelson bound. J. High Energy Phys., 11(11), 078–14pp.
Abstract: Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.
|
Carcamo Hernandez, A. E., Vishnudath, K. N., & Valle, J. W. F. (2023). Linear seesaw mechanism from dark sector. J. High Energy Phys., 09(9), 046–18pp.
Abstract: We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.
|
Kumar, R., Nath, N., & Srivastava, R. (2024). Cutting the scotogenic loop: adding flavor to dark matter. J. High Energy Phys., 12(12), 036–37pp.
Abstract: We introduce a framework for hybrid neutrino mass generation, wherein scotogenic dark sector particles, including dark matter, are charged non-trivially under the A4 flavor symmetry. The spontaneous breaking of the A4 group to residual Z2 subgroup results in the “cutting” of the radiative loop. As a consequence the neutrinos acquire mass through the hybrid “scoto-seesaw” mass mechanism, combining aspects of both the tree-level seesaw and one-loop scotogenic mechanisms, with the residual Z2 subgroup ensuring the stability of the dark matter. The flavor symmetry also leads to several predictions including the normal ordering of neutrino masses and “generalized μ- tau reflection symmetry” in leptonic mixing. Additionally, it gives testable predictions for neutrinoless double beta decay and a lower limit on the lightest neutrino mass. Finally, A4 -> Z2 breaking also leaves its imprint on the dark sector and ties it with the neutrino masses and mixing. The model allows only scalar dark matter, whose mass has a theoretical upper limit of less than or similar to 600 GeV, with viable parameter space satisfying all dark matter constraints, available only up to about 80 GeV. Conversely, fermionic dark matter is excluded due to constraints from the neutrino sector. Various aspects of this highly predictive framework can be tested in both current and upcoming neutrino and dark matter experiments.
|
King, S. F., Leontaris, G. K., Marsili, L., & Zhou, Y. L. (2024). Leptogenesis in realistic flipped SU(5). J. High Energy Phys., 12(12), 211–18pp.
Abstract: We study thermal leptogenesis in realistic supersymmetric flipped SU(5) x U(1) unification. As up-type quarks and neutrinos are arranged in the same multiplets, they exhibit strong correlations, and it is commonly believed that the masses of right-handed (RH) neutrinos are too hierarchical to fit the low-energy neutrino data. This pattern generally predicts a lightest RH neutrino too light to yield successful leptogenesis, with any lepton-antilepton asymmetry generated from heavier neutrinos being washed out unless special flavour structures are assumed. We propose a different scenario in which the lightest two RH neutrinos N1 and N2 have nearby masses of order 109 GeV, with thermal leptogenesis arising non-resonantly from both N1 and N2. We show that this pattern is consistent with all data on fermion masses and mixing and predicts the lightest physical left-handed neutrino mass to be smaller than about 10-7 eV. The Dirac phase, which does not take the maximal CP-violating value, plays an important role in leptogenesis.
|