Aristizabal Sierra, D., De Romeri, V., & Ternes, C. A. (2024). Reactor neutrino background in next-generation dark matter detectors. Phys. Rev. D, 109(11), 115026–7pp.
Abstract: Third -generation dark matter detectors will be fully sensitive to the 8 B solar neutrino flux. Because of this, the characterization of such a background has been the subject of extensive analyses over the last few years. In contrast, little is known about the impact of reactor neutrinos. In this paper, we report on the implications of such a flux for dark matter direct -detection searches. We consider five potential detector deployment sites envisioned by the recently established XLZD Consortium: SURF, SNOLAB, Kamioka, LNGS, and Boulby. By using public reactor data, we construct five reactor clusters -involving about 100 currently operating commercial nuclear reactors each -and determine the net neutrino flux at each detector site. Assuming a xenon -based detector and a 50 ton -year exposure, we show that in all cases the neutrino event rate may be sizable, depending on energy recoil thresholds. Of all possible detector sites, SURF and LNGS are those with the smallest reactor neutrino background. On the contrary, SNOLAB and Boulby are subject to the strongest reactor neutrino fluxes, with Kamioka being subject to a more moderate background. Our findings demonstrate that reactor neutrino fluxes should be taken into account in the next round of dark matter searches. We argue that this background may be particularly relevant for directional detectors, provided they meet the requirements we have employed in this analysis.
|
DUNE Collaboration(Abud, A. A. et al), Amar Es-Sghir, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV. Phys. Rev. D, 110(9), 092011–22pp.
Abstract: ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/c beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380 +/- 26 mbarns for the 6 GeV/c setting and 379 +/- 35 mbarns for the 7 GeV/c setting.
|
De Romeri, V., Papoulias, D. K., & Sanchez Garcia, G. (2025). Implications of the first CONUS plus measurement of coherent elastic neutrino-nucleus scattering. Phys. Rev. D, 111(7), 075025–19pp.
Abstract: The CONUS & thorn; collaboration has reported their first observation of coherent elastic neutrino-nucleus scattering (CEvNS). The experiment uses reactor electron antineutrinos and germanium detectors with recoil thresholds as low as 160 eVee. With an exposure of 327 kg x d, the measurement was made with a statistical significance of 3.76. We explore several physics implications of this observation, both within the standard model and in the context of new physics. We focus on a determination of the weak mixing angle, nonstandard and generalized neutrino interactions both with heavy and light mediators, neutrino magnetic moments, and the up-scattering of neutrinos into sterile fermions through the sterile dipole portal and new mediators. Our results highlight the role of reactor-based CEvNS experiments in probing a vast array of neutrino properties and new physics models.
|
Aristizabal Sierra, D., De Romeri, V., Flores, L. J., & Papoulias, D. K. (2020). Light vector mediators facing XENON1T data. Phys. Lett. B, 809, 135681–5pp.
Abstract: Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about 2-3 keV. With an exposure of 0.65 tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by pp neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below less than or similar to 0.1 MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2020). First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. J. Instrum., 15(12), P12004–100pp.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
|