toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Cosmic ray spectrum of protons plus helium nuclei between 6 and 158 TeV from HAWC data Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 6 Pages 063021 - 26pp  
  Keywords  
  Abstract A measurement with high statistics of the differential energy spectrum of light elements in cosmic rays, in particular, of primary H plus He nuclei, is reported. The spectrum is presented in the energy range from 6 to 158 TeV per nucleus. Data was collected with the High Altitude Water Cherenkov (HAWC) Observatory between June 2015 and June 2019. The analysis was based on a Bayesian unfolding procedure, which was applied on a subsample of vertical HAWC data that was enriched to 82% of events induced by light nuclei. To achieve the mass separation, a cut on the lateral age of air shower data was set guided by predictions of CORSIKA/QGSJET-I1-04 simulations. The measured spectrum is consistent with a broken power-law spectrum and shows a kneelike feature at around E = 24.0(-3.1)(+3.6) TeV, with a spectral index gamma = -2.51 +/- 0.02 before the break and with gamma = -2.83 +/- 0.02 above it. The feature has a statistical significance of 4.1 sigma. Within systematic uncertainties, the significance of the spectral break is 0.8 sigma.  
  Address [Albert, A.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: juan.arteaga@umich.mx;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000789448800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5215  
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F. url  doi
openurl 
  Title Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories Type Journal Article
  Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 667 Issue Pages A36 - 12pp  
  Keywords methods; data analysis; gamma rays; general  
  Abstract Context. Ground-based gamma-ray astronomy is still a rather young field of research, with strong historical connections to particle physics. This is why most observations are conducted by experiments with proprietary data and analysis software, as is usual in the particle physics field. However, in recent years, this paradigm has been slowly shifting toward the development and use of open-source data formats and tools, driven by upcoming observatories such as the Cherenkov Telescope Array (CTA). In this context, a community-driven, shared data format (the gamma-astro-data-format, or GADF) and analysis tools such as Gammapy and ctools have been developed. So far, these efforts have been led by the Imaging Atmospheric Cherenkov Telescope community, leaving out other types of ground-based gamma-ray instruments. Aims. We aim to show that the data from ground particle arrays, such as the High-Altitude Water Cherenkov (HAWC) observatory, are also compatible with the GADF and can thus be fully analyzed using the related tools, in this case, Gammapy. Methods. We reproduced several published HAWC results using Gammapy and data products compliant with GADF standard. We also illustrate the capabilities of the shared format and tools by producing a joint fit of the Crab spectrum including data from six different gamma-ray experiments. Results. We find excellent agreement with the reference results, a powerful confirmation of both the published results and the tools involved. Conclusions. The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analyzed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. To emphasize this, a sample of Crab nebula event lists is made public with this paper. Because of the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA.  
  Address [Albert, A.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: laura.olivera-nieto@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher (up) Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000879223700008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5408  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 256 Issue Pages 107477 - 15pp  
  Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE  
  Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564482200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4520  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Measurement of the atmospheric nu(e) and nu(mu) energy spectra with the ANTARES neutrino telescope Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 816 Issue Pages 136228 - 7pp  
  Keywords Neutrino telescope; Atmospheric neutrinos; ANTARES  
  Abstract This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: spurio@bo.infn.it;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647421500082 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4818  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for magnetic monopoles with ten years of the ANTARES neutrino telescope Type Journal Article
  Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.  
  Volume 34 Issue Pages 1-8  
  Keywords ANTARES telescope; Magnetic monopoles; Neutrino  
  Abstract This work presents a new search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). Compared to previous ANTARES searches, this analysis uses a run-by-run simulation strategy, with a larger exposure as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their interaction cross-section with matter. No signal compatible with the passage of relativistic magnetic monopoles is observed, and upper limits on the flux of magnetic monopoles with beta = v/c & nbsp;>=& nbsp;0.55, are presented. For ultra-relativistic magnetic monopoles the flux limit is similar to 7 x 10(-18) cm(-2) s(-1) sr(-1). (C)& nbsp;2022 Elsevier B.V. All rights reserved.  
  Address [Albert, A.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, F-67000 Strasbourg, France, Email: boumaaza.jihad@gmail.com  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-4048 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791701000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5223  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1040 Issue Pages 167132 - 13pp  
  Keywords Time calibration; Instrumentation; Neutrino telescopes  
  Abstract The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000841467100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5342  
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F. url  doi
openurl 
  Title Gamma/hadron separation with the HAWC observatory Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1039 Issue Pages 166984 - 13pp  
  Keywords High energy; Crab Nebula; G/H separation; Machine Learning  
  Abstract The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority (> 99.9%) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.  
  Address [Alfaro, R.; Angeles Camacho, J. R.; Avila Rojas, D.; Belmont-Moreno, E.; Espinoza, C.; Garcia, D.; Hernandez, S.; Leon Vargas, H.; Sandoval, A.; Serna-Franco, J.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico, Email: tcapistran@astro.unam.mx;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861747900006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5371  
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F. url  doi
openurl 
  Title The High-Altitude Water Cherenkov (HAWC) observatory in Mexico: The primary detector Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1052 Issue Pages 168253 - 18pp  
  Keywords Physics – instrumentation and detectors; Water Cherenkov Detectors; Astrophysics; High energy physics – experiment; Nuclear experiment  
  Abstract The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in Mexico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.  
  Address [Abeysekara, A. U.; Barber, A. S.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA, Email: eduardo.delafuentea@academicos.udg.mx  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063137300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5674  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Saina, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 841 Issue Pages 137951 - 7pp  
  Keywords ANTARES; Neutrino telescope; Galactic Centre; Cosmic ray; Pion-decay model  
  Abstract Interactions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce gamma-ray flux from the Galactic Ridge. If the gamma-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the gamma-ray flux is expected from the same sky region. Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region |l| < 30 degrees, |b| < 2 degrees. The expected background in the search region is estimated using an off-zone region with similar sky coverage. Neutrino signal originating from a power-law spectrum with spectral index ranging from Gamma nu = 1to 4is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge. The energy distributions in the signal region are inconsistent with the background expectation at similar to 96% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a spectral index 2.45(-0.34)(+0.22) and a flux normalization dN nu/dE nu= 4.0(-2.0)(+2.7) x 10(-16) GeV-1 cm(-2) s(-1) sr(-1) at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed gamma-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range.  
  Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: mathieu.lamoureux@uclouvain.be  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063493500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5686  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Embedded software of the KM3NeT central logic board Type Journal Article
  Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 296 Issue Pages 109036 - 15pp  
  Keywords Embedded software; Neutrino detectors; Synchronization networks  
  Abstract The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes. Program summary Program title: Embedded software for the KM3NeT CLB CPC Library link to program files: https://doi.org/10.17632/s847hpsns4.1 Licensing provisions: GNU General Public License 3 Programming language: C Nature of problem: The challenge for the embedded software in the KM3NeT neutrino telescope lies in orchestrating the Digital Optical Modules (DOMs) to achieve the synchronized data acquisition of the incoming optical signals. The DOMs are the crucial component responsible for capturing neutrino interactions deep underwater. The embedded software must configure and precisely time the operation of each DOM. Any deviation or timing mismatch could compromise data integrity, undermining the scientific value of the experiment. Therefore, the embedded software plays a critical role in coordinating, synchronizing, and operating these modules, ensuring they work in unison to capture and process neutrino signals accurately, ultimately advancing our understanding of fundamental particles in the Universe. Solution method: The embedded software on the DOMs provides a solution based on a C-based bare-metal application, operating without a real-time embedded OS. It is loaded into the RAM during FPGA configuration, consuming less than 256 kB of RAM. The software architecture comprises two layers: system software and application. The former offers OS-like features, including a multitasking scheduler, firmware updates, peripheral drivers, a UDP-based network stack, and error handling utilities. The application layer contains a state machine ensuring consistent program states. It is navigated via slow control events, including external inputs and autonomous responses. Subsystems within the application code control specific acquisition electronics components via the associated driver abstractions. Additional comments including restrictions and unusual features: Due to the operation conditions of the neutrino telescope, where access is restricted, the embedded software implements a fail-safe procedure to reconfigure the firmware where the embedded software runs.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: km3net-pc@km3net.de;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162587500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5961  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva