toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benisty, D.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter Type Journal Article
  Year 2021 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 2108 - 24pp  
  Keywords metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational constraints; scalar fields  
  Abstract The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, epsilon) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |epsilon|& LSIM;5 & BULL;10-8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.  
  Address [Benisty, David] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England, Email: benidav@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000726717400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5040  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Born-Infeld inspired modifications of gravity Type Journal Article
  Year 2018 Publication (down) Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 727 Issue Pages 1-129  
  Keywords Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities  
  Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.  
  Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000425482900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3497  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Stellar structure models in modified theories of gravity: Lessons and challenges Type Journal Article
  Year 2020 Publication (down) Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 876 Issue Pages 1-75  
  Keywords Stellar structure; Modified gravity; Palatini formalism; Neutron stars; Brown dwarfs; Relativistic stars; Weak field; f(R) theories; Born-Infeld theory; Horndeski theory  
  Abstract The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravitational interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar's hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. For non-relativistic stars, such as white, brown and red dwarfs, the weakening/strengthening of the gravitational force inside astrophysical bodies via the modified Newtonian (Poisson) equation may induce changes on the star's mass, radius, central density or luminosity, having an impact, for instance, in the Chandrasekhar's limit for white dwarfs, or in the minimum mass for stable hydrogen burning in high-mass brown dwarfs. This work aims to provide a broad overview of the main such results achieved in the recent literature for many such modified theories of gravity, by combining the results and constraints obtained from the analysis of relativistic and non-relativistic stars in different scenarios. Moreover, we will build a bridge between the efforts of the community working on different theories, formulations, types of stars, theoretical modelings, and observational aspects, highlighting some of the most promising opportunities in the field.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570298900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4531  
Permanent link to this record
 

 
Author Guendelman, E.I.; Olmo, G.J.; Rubiera-Garcia, D.; Vasihoun, M. url  doi
openurl 
  Title Nonsingular electrovacuum solutions with dynamically generated cosmological constant Type Journal Article
  Year 2013 Publication (down) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 726 Issue 4-5 Pages 870-875  
  Keywords Modified gravity; Palatini formalism; Nonlinear electrodynamics; Dynamical cosmological constant; Nonsingular solutions; Wormholes  
  Abstract We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.  
  Address [Guendelman, E. I.; Vasihoun, M.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel, Email: guendel@bgumail.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327907000045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1680  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Planck scale physics and topology change through an exactly solvable model Type Journal Article
  Year 2014 Publication (down) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 731 Issue Pages 163-167  
  Keywords Modified gravity; Palatini formalism; Planck scale physics; Dynamical Vaidya solutions; Topology change  
  Abstract We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334094500028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1757  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
  Year 2015 Publication (down) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 740 Issue Pages 73-79  
  Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology  
  Abstract We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347046200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2099  
Permanent link to this record
 

 
Author Bejarano, C.; Delhom, A.; Jimenez-Cano, A.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geometric inequivalence of metric and Palatini formulations of General Relativity Type Journal Article
  Year 2020 Publication (down) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages 135275 - 4pp  
  Keywords  
  Abstract Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta μnu R alpha beta μnu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.  
  Address [Bejarano, Cecilia] UBA, CONICET, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4348  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title New light rings from multiple critical curves as observational signatures of black hole mimickers Type Journal Article
  Year 2022 Publication (down) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 829 Issue Pages 137045 - 5pp  
  Keywords  
  Abstract We argue that the appearance of additional light rings in a shadow observation – beyond the infinite sequence of exponentially demagnified self-similar rings foreseen in the Kerr solution – would make a compelling case for the existence of black hole mimickers having multiple critical curves. We support this claim by discussing three different scenarios of spherically symmetric wormhole geometries having two such critical curves, and explicitly work out the optical appearance of one such object when surrounded by an optically and geometrically thin accretion disk.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto Univ Valencia, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000821533700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5290  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Palatini f(R) black holes in nonlinear electrodynamics Type Journal Article
  Year 2011 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 12 Pages 124059 - 14pp  
  Keywords  
  Abstract The electrically charged Born-Infeld black holes in the Palatini formalism for f(R) theories are analyzed. Specifically we study those supported by a theory f(R) = R +/- R(2)/R(P), where R(P) is Planck's curvature. These black holes only differ from their General Relativity counterparts very close to the center but may give rise to different geometrical structures in terms of inner horizons. The nature and strength of the central singularities are also significantly affected. In particular, for the model f(R) = R – R(2)/R(P) the singularity is shifted to a finite radius, r(+), and the Kretschmann scalar diverges only as 1/(r-r(+))(2).  
  Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298666600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 878  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Reissner-Nordstrom black holes in extended Palatini theories Type Journal Article
  Year 2012 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 4 Pages 044014 - 15pp  
  Keywords  
  Abstract We study static, spherically symmetric solutions with an electric field in an extension of general relativity containing a Ricci-squared term and formulated in the Palatini formalism. We find that all the solutions present a central core whose area is proportional to the Planck area times the number of charges. Far from the core, curvature invariants quickly tend to those of the usual Reissner-Nordstrom solution, though the structure of horizons may be different. In fact, besides the structures found in the Reissner-Nordstrom solution of general relativity, we find black hole solutions with just one nondegenerate horizon (Schwarzschild-like) and nonsingular black holes and naked cores. The charge-to-mass ratio of the nonsingular solutions implies that the core matter density is independent of the specific amounts of charge and mass and of order the Planck density. We discuss the physical implications of these results for astrophysical and microscopic black holes, construct the Penrose diagrams of some illustrative cases, and show that the maximal analytical extension of the nonsingular solutions implies a bounce of the radial coordinate.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307276200003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1114  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva