toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author AGATA Collaboration (Soderstrom, P.A. et al); Gadea, A. doi  openurl
  Title Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors Type Journal Article
  Year 2011 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages 96-109  
  Keywords gamma-ray tracking; AGATA; Monte Carlo simulations; HPGe detectors; Fusion-evaporation reactions  
  Abstract The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected gamma-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted gamma-ray. The gamma-ray tracking was used to determine the full energy of the gamma-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FVVHM of the interaction position resolution for the gamma-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a (30)5i beam at 64 MeV on a thin C-12 target. Pulse-shape analysis of the digitized detector waveforms and gamma-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the gamma-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FVVHM of the interaction position resolution varies roughly linearly as a function of gamma-ray energy from 8.5 mm at 250 key to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the gamma-ray energy range from 1.5 to 4 MeV.  
  Address [Soderstrom, P. -A.; Nyberg, J.; Al-Adili, A.; Atac, A.; Veyssiere, C.] Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden, Email: P-A.Soderstrom@physics.uu.se  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 619  
Permanent link to this record
 

 
Author Labiche, M. et al; Caballero, L.; Rubio, B. url  doi
openurl 
  Title TIARA: A large solid angle silicon array for direct reaction studies with radioactive beams Type Journal Article
  Year 2010 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 614 Issue 3 Pages 439-448  
  Keywords Position sensitive silicon detectors; Nucleon transfer reactions; Radioactive beams; Inverse kinematics  
  Abstract A compact, quasi-4 pi position sensitive silicon array. TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the gamma-ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The N-14(d,p)N-15 reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the N-15 ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.  
  Address [Labiche, M.; Lemmon, R. C.; Appleton, S.; Faiz, K.; Pucknell, V. F. E.; Warner, D. D.] STFC Daresbury Lab, Nucl Phys Grp, Warrington WA4 4AD, Cheshire, England, Email: marc.labiche@stfc.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276001800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 477  
Permanent link to this record
 

 
Author Domingo-Pardo, C.; Goel, N.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Didierjean, F.; Duchene, G.; Sigward, M.H. doi  openurl
  Title A novel gamma-ray imaging method for the pulse-shape characterization of position sensitive semiconductor radiation detectors Type Journal Article
  Year 2011 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 643 Issue 1 Pages 79-88  
  Keywords gamma-detector; Pulse shape analysis; Tracking; Semiconductor  
  Abstract A new technique for the pulse-shape characterization of gamma-ray position sensitive germanium detectors is presented. This method combines the pulse shape comparison scan (PSCS) principle with a gamma-ray imaging technique. The latter is provided by a supplementary, high performance, position sensitive gamma-ray scintillator detector. We describe the basic aspects of the method and we show measurements made for the study of pulse-shapes in a non-segmented planar HPGe detector. A preliminary application of the PSCS is carried out, although a more detailed investigation is being performed with highly segmented position sensitive detectors.  
  Address [Domingo-Pardo, C; Goel, N; Engert, T; Gerl, J; Kojouharov, I; Schaffner, H] GSI Helmholtzzentnim Schwenonenforsch mbH, D-64291 Darmstadt, Germany, Email: cesar.domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292442700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 694  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title The T2K experiment Type Journal Article
  Year 2011 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 659 Issue 1 Pages 106-135  
  Keywords Neutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-Kamiokande  
  Abstract The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.  
  Address [Beznosko, D.; Gilje, K.; Hignight, J.; Imber, J.; Jung, C. K.; Le, P. T.; Lopez, G. D.; Malafis, C. J.; McGrew, C.; Nagashima, G.; Nelson, B.; Paul, P.; Ramos, K.; Schmidt, J.; Steffens, J.; Tadepalli, A. S.; Taylor, I. J.; Toki, W.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA, Email: chang.jung@stonybrook.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297826100016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 832  
Permanent link to this record
 

 
Author Affolder, A. et al; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Miñano, M.; Soldevila, U. doi  openurl
  Title Silicon detectors for the sLHC Type Journal Article
  Year 2011 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 658 Issue 1 Pages 11-16  
  Keywords Silicon particle detectors; Radiation damage; Irradiation; Charge collection efficiency  
  Abstract In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages.  
  Address [Barber, T.; Breindl, M.; Driewer, A.; Koehler, M.; Kuehn, S.; Parzefall, U.; Preiss, J.; Walz, M.; Wiik, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany, Email: Ulrich.Parzefall@physik.uni-freiburg.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297783300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 836  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva