toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jeong, K.S.; Park, W.I. url  doi
openurl 
  Title Cosmology with a supersymmetric local B – L model Type Journal Article
  Year 2023 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 016 - 34pp  
  Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology  
  Abstract We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.  
  Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001149204000015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5992  
Permanent link to this record
 

 
Author Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S. url  doi
openurl 
  Title Updated BBN bounds on the cosmological lepton asymmetry for non-zero theta(13) Type Journal Article
  Year 2012 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 708 Issue 1-2 Pages 1-5  
  Keywords Neutrinos; Physics of the early Universe; Primordial asymmetries  
  Abstract We discuss the bounds on the cosmological lepton number from Big Bang Nucleosynthesis (BBN), in light of recent evidences for a large value of the neutrino mixing angle theta(13), sin(2) theta(13) greater than or similar to 0.01 at 2 sigma. The largest asymmetries for electron and mu, tau neutrinos compatible with He-4 and H-2 primordial yields are computed versus the neutrino mass hierarchy and mixing angles. The flavour oscillation dynamics is traced till the beginning of BBN and neutrino distributions after decoupling are numerically computed. The latter contains in general, non-thermal distortion due to the onset of flavour oscillations driven by solar squared mass difference in the temperature range where neutrino scatterings become inefficient to enforce thermodynamical equilibrium. Depending on the value of theta(13), this translates into a larger value for the effective number of neutrinos, N-eff. Upper bounds on this parameter are discussed for both neutrino mass hierarchies. Values for N-eff which are large enough to be detectable by the Planck experiment are found only for the (presently disfavoured) range sin(2) theta(13) <= 0.01.  
  Address [Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Ed Inst Invest, E-46071 Valencia, Spain, Email: pastor@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301310000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 967  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva