toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NEXT Collaboration (Felkai, R. et al); Sorel, M.; Lopez-March, N.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Laing, A.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Rodriguez, J.; Simon, A.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Helium-Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs Type Journal Article
  Year 2018 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 82-90  
  Keywords Helium; Xenon; Double-beta decay; TPC; Low diffusion; Electroluminescence  
  Abstract Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15 %, may reduce drastically the transverse diffusion down to 2.5 mm/root m from the 10.5 mm/root m of pure xenon. The longitudinal diffusion remains around 4 mm/root m. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail.  
  Address [Adams, C.; Guenette, R.; Martin-Albo, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: francesc.monrabalcapilla@uta.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3731  
Permanent link to this record
 

 
Author Freitas, E.D.C.; Monteiro, C.M.B.; Ball, M.; Gomez-Cadenas, J.J.; Lopes, J.A.M.; Lux, T.; Sanchez, F.; dos Santos, J.M.F. doi  openurl
  Title Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0 nu beta beta) search Type Journal Article
  Year 2010 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 684 Issue 4-5 Pages 205-210  
  Keywords Neutrino; Neutrinoless double-beta decay; Secondary scintillation; Xenon; High-pressure  
  Abstract The search for neutrinoless double beta decay (0 nu beta beta) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141 +/- 6 at 2 bar to 170 +/- 10 at 8 bar. In our setup, this Parameter does not increase above 8 bar due to nonnegligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.  
  Address [Freitas, E. D. C.; Monteiro, C. M. B.; Lopes, J. A. M.; dos Santos, J. M. F.] Univ Coimbra, GIAN CI, Dept Fis, P-3004516 Coimbra, Portugal, Email: jmf@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275009600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 487  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Menendez, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. doi  openurl
  Title The search for neutrinoless double-beta decay Type Journal Article
  Year 2024 Publication (up) Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento  
  Volume 46 Issue Pages 619-692  
  Keywords Neutrinos; Majorana; Double-beta decay; Nuclear matrix elements  
  Abstract Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.  
  Address [Gomez-Cadenas, Juan Jose; Monrabal, Francesc] Donostia Int Phys Ctr, ERC Basque Excellence Res Ctr, Donostia San Sebastian 20018, Spain, Email: jjgomezcadenas@dipc.org  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-697x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151173800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5915  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva