|   | 
Details
   web
Records
Author NEXT Collaboration (Byrnes, N.K. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout Type Journal Article
Year 2023 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08006 - 33pp
Keywords Double-beta decay detectors; Optical detector readout concepts; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
Address [Byrnes, N. K.; Parmaksiz, I; Asaadi, J.; Baeza-Rubio, J.; Jones, B. J. P.; Mistry, K.; Moya, I. A.; Nygren, D. R.; Stogsdill, K.; Navarro, K. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001084390900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5764
Permanent link to this record
 

 
Author CMS and CALICE Collaborations (Acar, B. et al); Irles, A.
Title Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c Type Journal Article
Year 2023 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08014 - 32pp
Keywords Calorimeters; Large detector systems for particle and astroparticle physics; Radiation-hard detectors; Si microstrip and pad detectors
Abstract The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.
Address [Caraway, B.; Dittmann, J.; Hatakeyama, K.; Kanuganti, A. R.; Wilson, J. S.] Baylor Univ, Waco, TX 76706 USA, Email: Seema.Sharma@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001085057700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5784
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC Type Journal Article
Year 2023 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 11 Pages T11004 - 61pp
Keywords Analysis and statistical methods; Particle identification methods
Abstract Measurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analyses are subject to 'fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-lepton selection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particle interactions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods. Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance.
Address [Amerl, M.; Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001116977400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5884
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Prado, D.; Veloso, J.F.C.A.; Yahlali, N.
Title Development of a real-time tritium-in-water monitor Type Journal Article
Year 2023 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 12 Pages T12008 - 14pp
Keywords Instruments for environmental monitoring; food control and medical use; Very low-energy charged particle detectors; Scintillators and scintillating fibres and light guides
Abstract In this paper, we report the development and performance of a detector module envisaging a tritium-in-water real-time activity monitor. The monitor is based on modular detection units whose number can be chosen according to the required sensitivity. The full system is being designed to achieve a Minimum Detectable Activity (MDA) of 100 Bq/L of tritium-in-water activity which is the limit established by the E.U. Council Directive 2013/51/Euratom for water intended for human consumption. The same system can be used as a real-time pre-alert system for nuclear power plant regarding tritium-in water environmental surveillance. The first detector module was characterized, commissioned and installed immediately after the discharge channel of the Arrocampo dam (Almaraz nuclear power plant, Spain) on the Tagus river. Due to the high sensitivity of the single detection modules, the system requires radioactive background mitigation techniques through the use of active and passive shielding. We have extrapolated a MDA of 3.6 kBq/L for a single module being this value limited by the cosmic background. The obtained value for a single module is already compatible with a real-time environmental surveillance and pre-alert system. Further optimization of the single-module sensitivity will imply the reduction of the number of modules and the cost of the detector system.
Address [Azevedo, C. D. R.; Prado, D.] Univ Aveiro, I3N, Phys Dept, Campus Univ Santiago, P-3810193 Aveiro, Portugal, Email: cdazevedo@ua.pt
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001147582800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5912
Permanent link to this record
 

 
Author Black, K.M. et al; Zurita, J.
Title Muon Collider Forum report Type Journal Article
Year 2024 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages T02015 - 95pp
Keywords Accelerator Applications; Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings- high energy (linear accelerators, synchrotrons); Large detector systems for particle and astroparticle physics
Abstract A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.
Address [Black, K. M.; Bose, T.; Dasu, S.; Everaerts, P.; Jia, H.; Lomte, S.; Pinna, D.; Venkatasubramanian, N.; Vuosalo, C.] Univ Wisconsin Madison, Madison, WI USA, Email: sergo@fnal.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185309300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6048
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Curvature-bias corrections using a pseudomass method Type Journal Article
Year 2024 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 3 Pages P03010 - 22pp
Keywords Analysis and statistical methods; Detector alignment and calibration methods (lasers, sources, particle-beams); Large detector-systems performance; Performance of High Energy Physics Detectors
Abstract Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy root s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z -> mu(+)mu(-) decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10(-4) GeV-1 level, improves the Z -> mu(+)mu(-) mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001190907900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6057
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Helium identification with LHCb Type Journal Article
Year 2024 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02010 - 23pp
Keywords dE/dx detectors; Ion identification systems; Large detector systems for particle and astroparticle physics; Particle identification methods
Abstract The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: rmoise@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6068
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Momentum scale calibration of the LHCb spectrometer Type Journal Article
Year 2024 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02008 - 21pp
Keywords Particle tracking detectors; Analysis and statistical methods
Abstract For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/qi -> mu+mu- and B+ -> J/qiK+ decays and leads to a relative accuracy of 3 x 10-4 on the momentum scale.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6070
Permanent link to this record
 

 
Author Trbojevich, R.A.; Fernandez, A.; Watanabe, F.; Mustafa, T.; Bryant, M.S.
Title Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells Type Journal Article
Year 2016 Publication (up) Journal of Nanoparticle Research Abbreviated Journal J. Nanopart. Res.
Volume 18 Issue 3 Pages 55 - 12pp
Keywords Membranes; Silver nanoparticles; Diffusion cells; Food packaging; Permeation; Environmental and health effects
Abstract Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 lm pore diameter 125 μm thick synthetic cellulose membranes, and 16 and 120 μm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.
Address [Trbojevich, Raul A.; Bryant, Matthew S.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, 3900 NCTR Rd, Jefferson, AR 72079 USA, Email: velifdez@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-0764 ISBN Medium
Area Expedition Conference
Notes WOS:000387044400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2849
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J.
Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
Year 2019 Publication (up) Journal of Physics G Abbreviated Journal J. Phys. G
Volume 46 Issue 4 Pages 045001 - 155pp
Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics
Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.
Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000460153900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3930
Permanent link to this record