toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Babichev, E.; Fabbri, A. url  doi
openurl 
  Title Stability analysis of black holes in massive gravity: A unified treatment Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 8 Pages 081502 - 5pp  
  Keywords  
  Abstract We consider the analytic solutions of massive (bi) gravity which can be written in a simple form using advanced Eddington-Finkelstein coordinates. We analyze the stability of these solutions against radial perturbations. First we recover the previously obtained result on the instability of the bidiagonal bi-Schwarzschild solutions. In the nonbidiagonal case (which contains, in particular, the Schwarzschild solution with Minkowski fiducial metric), we show that generically there are physical spherically symmetric perturbations, but no unstable modes.  
  Address [Babichev, Eugeny; Fabbri, Alessandro] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334335000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1770  
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Amplifying the Hawking Signal in BECs Type Journal Article
  Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2014 Issue Pages 713574 - 8pp  
  Keywords  
  Abstract We consider simple models of Bosep-Einstein condensates to study analog pairp-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly timep-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.  
  Address [Balbinot, Roberto; Fabbri, Alessandro] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: afabbri@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335740300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1787  
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A. url  doi
openurl 
  Title A class of charged black hole solutions in massive (bi)gravity Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 016 - 10pp  
  Keywords Classical Theories of Gravity; Black Holes  
  Abstract We present a new class of solutions describing charged black holes in massive (bi)gravity. For a generic choice of the parameters of the massive gravity action, the solution is the Reissner-Nordstrom-de Sitter metric written in the Eddington-Finkelstein coordinates for both metrics. We also study a special case of the parameters, for which the space of solutions contains an extra symmetry.  
  Address [Babichev, Eugeny] Univ Paris 11, CNRS, LPT, UMR 8627, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339110500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1847  
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A. url  doi
openurl 
  Title Rotating black holes in massive gravity Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 8 Pages 084019 - 7pp  
  Keywords  
  Abstract We present a solution for rotating black holes in massive gravity. We first give a solution of massive gravity with one dynamical metric. Both metrics of this solution are expressed in the advanced Eddington-Finkelstein-like coordinates: the physical metric has the original Kerr line element, while the fiducial metric is flat, but written in a rotating Eddington-Finkelstein form. For the bigravity theory we give an analogue of this solution: the two metrics have the original Kerr form, but, in general, different black hole masses. The generalization of the solution to include the electric charge is also given; it is an analogue of the Kerr-Newman solution in general relativity. We also discuss further possible ways to generalize the solutions.  
  Address [Babichev, Eugeny] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343773100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1984  
Permanent link to this record
 

 
Author Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R. url  doi
openurl 
  Title Gray-body factor and infrared divergences in 1D BEC acoustic black holes Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 10 Pages 104044 - 6pp  
  Keywords  
  Abstract It is shown that the gray-body factor for a one-dimensional elongated Bose-Einstein condensate (BEC) acoustic black hole with one horizon does not vanish in the low-frequency (omega -> 0) limit. This implies that the analog Hawking radiation is dominated by the emission of an infinite number (1/omega) of soft phonons in contrast with the case of a Schwarzschild black hole where the gray-body factor vanishes as omega -> 0 and the spectrum is not dominated by low-energy particles. The infrared behaviors of certain correlation functions are also discussed.  
  Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348186700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2079  
Permanent link to this record
 

 
Author Anderson, P.R.; Fabbri, A.; Balbinot, R. url  doi
openurl 
  Title Low frequency gray-body factors and infrared divergences: Rigorous results Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 6 Pages 064061 - 18pp  
  Keywords  
  Abstract Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a one-dimensional Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.  
  Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352062800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2172  
Permanent link to this record
 

 
Author Clement, G.; Fabbri, A. url  doi
openurl 
  Title A scenario for critical scalar field collapse in AdS(3) Type Journal Article
  Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 32 Issue 9 Pages 095009 - 16pp  
  Keywords critical collapse; exact solutions; AdS(3)  
  Abstract We present a family of exact solutions, depending on two parameters alpha and b (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant Lambda. For b not equal 0 these solutions reduce to the static Banados-Teitelboim-Zanelli (BTZ) family of vacuum solutions, with mass M = -alpha. For b not equal 0, the solutions become dynamical and develop a strong spacelike central singularity. The alpha < 0 solutions are black-hole like, with a global structure topologically similar to that of the BTZ black holes, and a finite effective mass. We show that the near-singularity behavior of the solutions with alpha > 0 agrees qualitatively with that observed in numerical simulations of sub-critical collapse, including the independence of the near-critical regime on the angle deficit of the spacetime. We analyze in the Lambda = 0 approximation the linear perturbations of the self-similar threshold solution, alpha = 0, and find that it has only one unstable growing mode, which qualifies it as a candidate critical solution for scalar field collapse.  
  Address [Clement, Gerard] Univ Savoie, CNRS, LAPTh, F-74941 Annecy Le Vieux, France, Email: gerard.clement@lapth.cnrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353351500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2192  
Permanent link to this record
 

 
Author Boiron, D.; Fabbri, A.; Larre, P.E.; Pavloff, N.; Westbrook, C.I.; Zin, P. url  doi
openurl 
  Title Quantum Signature of Analog Hawking Radiation in Momentum Space Type Journal Article
  Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 115 Issue 2 Pages 025301 - 5pp  
  Keywords  
  Abstract We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one-and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.  
  Address [Boiron, D.; Westbrook, C. I.] Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France, Email: afabbri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000357500500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2294  
Permanent link to this record
 

 
Author Mauro, S.; Balbinot, R.; Fabbri, A.; Shapiro, I.L. url  doi
openurl 
  Title Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability Type Journal Article
  Year 2015 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 130 Issue 7 Pages 135 - 8pp  
  Keywords  
  Abstract We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.  
  Address [Mauro, Sebastiao; Shapiro, Ilya L.] Univ Fed Juiz de Fora, Dept Fis, ICE, BR-36036360 Juiz De Fora, MG, Brazil, Email: afabbri@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358147100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2309  
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R.; Anderson, P.R. url  doi
openurl 
  Title Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 6 Pages 064046 - 6pp  
  Keywords  
  Abstract A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.  
  Address [Fabbri, Alessandro; Balbinot, Roberto] Ctr Studi & Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy, Email: afabbri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372421100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2582  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva