|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Salesa, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Monte Carlo simulations for the ANTARES underwater neutrino telescope Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 064 - 20pp
Keywords cosmic ray experiments; neutrino astronomy; neutrino detectors; neutrino experiments
Abstract Monte Carlo simulations are a unique tool to check the response of a detector and to monitor its performance. For a deep-sea neutrino telescope, the variability of the environmental conditions that can affect the behaviour of the data acquisition system must be considered, in addition to a reliable description of the active parts of the detector and of the features of physics events, in order to produce a realistic set of simulated events. In this paper, the software tools used to produce neutrino and cosmic ray signatures in the telescope and the strategy developed to represent the time evolution of the natural environment and of the detector efficiency are described.
Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: annarita.margiotta@unibo.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000620675000064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4743
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P.
Title Reactor rate modulation oscillation analysis with two detectors in Double Chooz Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 190 - 18pp
Keywords Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract A theta (13) oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of theta (13) and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the nu <mml:mo stretchy=“true”><overbar></mml:mover>e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and Li-9 decays. The background-model-independent determination of the mixing angle yields sin(2)(2 theta (13)) = 0.094 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on theta (13) to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation.
Address [Bekman, I; Hellwig, D.; Soldin, P.; Stahl, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany, Email: navas@lal.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000616730800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4728
Permanent link to this record
 

 
Author Poley, L.; Stolzenberg, U.; Schwenker, B.; Frey, A.; Gottlicher, P.; Marinas, C.; Stanitzki, M.; Stelzer, B.
Title Mapping the material distribution of a complex structure in an electron beam Type Journal Article
Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 16 Issue 1 Pages P01010 - 33pp
Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors; Detector design and construction technologies and materials
Abstract The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.
Address [Poley, L.; Stelzer, B.] Simon Fraser Univ, Dept Phys, Univ Dr, Burnaby, BC, Canada, Email: APoley@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000608273000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4687
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 12 Pages P12004 - 100pp
Keywords Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000595944800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4643
Permanent link to this record
 

 
Author NEXT Collaboration (Ghosh, S. et al); Martin-Albo, J.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martinez-Vara, M.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 11 Pages P11031 - 16pp
Keywords Detector design and construction technologies and materials; Double-beta decay detectors; Time projection Chambers (TPC)
Abstract Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm We also see that the reflectance of PIFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance in the visible without introducing a specular component in the reflectance.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: jhaefner@g.harvard.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000595650800024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4633
Permanent link to this record