toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Rosa, J.L.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Shadows and photon rings of regular black holes and geonic horizonless compact objects Type Journal Article
  Year 2023 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 40 Issue 17 Pages 174002 - 37pp  
  Keywords black holes; compact objects; photon rings; shadows; metric-affine gravity; Born-Infeld gravity; regular solutions  
  Abstract The optical appearance of a body compact enough to feature an unstable bound orbit, when surrounded by an accretion disk, is expected to be dominated by a luminous ring of radiation enclosing a central brightness depression typically known as the shadow. Despite observational limitations, the rough details of this picture have been now confirmed by the results of the Event Horizon Telescope (EHT) Collaboration on the imaging of the M87 and Milky Way supermassive central objects. However, the precise characterization of both features-ring and shadow-depends on the interaction between the background geometry and the accretion disk, thus being a fertile playground to test our theories on the nature of compact objects and the gravitational field itself in the strong-field regime. In this work we use both features in order to test a continuous family of solutions interpolating between regular black holes and horizonless compact objects, which arise within the Eddington-inspired Born-Infeld theory of gravity, a viable extension of Einstein's general relativity (GR). To this end we consider seven distinctive classes of such configurations (five black holes and two traversable wormholes) and study their optical appearances under illumination by a geometrically and optically thin accretion disk, emitting monochromatically with three analytic intensity profiles previously suggested in the literature. We build such images and consider the sub-ring structure created by light rays crossing the disk more than once and existing on top of the main ring of radiation. We discuss in detail the modifications as compared to their GR counterparts, the Lyapunov exponents of unstable nearly-bound orbits, as well as the differences between black hole and traversable wormholes for the three intensity profiles. In addition we use the claim by the EHT Collaboration on the radius of the bright ring acting (under proper calibrations) as a proxy for the radius of the shadow itself to explore the parameter space of our solutions compatible with such a result.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: drubiera@ucm.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001043720300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5600  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
 

 
Author Tortajada, S.; Albiol, F.; Caballero, L.; Albiol, A.; Leganes-Nieto, J.L. doi  openurl
  Title A portable geometry-independent tomographic system for gamma-ray, a next generation of nuclear waste characterization Type Journal Article
  Year 2023 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 13 Issue 1 Pages 12284 - 10pp  
  Keywords  
  Abstract One of the main activities of the nuclear industry is the characterisation of radioactive waste based on the detection of gamma radiation. Large volumes of radioactive waste are classified according to their average activity, but often the radioactivity exceeds the maximum allowed by regulators in specific parts of the bulk. In addition, the detection of the radiation is currently based on static detection systems where the geometry of the bulk is fixed and well known. Furthermore, these systems are not portable and depend on the transport of waste to the places where the detection systems are located. However, there are situations where the geometry varies and where moving waste is complex. This is especially true in compromised situations.We present a new model for nuclear waste management based on a portable and geometry-independent tomographic system for three-dimensional image reconstruction for gamma radiation detection. The system relies on a combination of a gamma radiation camera and a visible camera that allows to visualise radioactivity using augmented reality and artificial computer vision techniques. This novel tomographic system has the potential to be a disruptive innovation in the nuclear industry for nuclear waste management.  
  Address [Tortajada, Salvador; Albiol, Francisco; Caballero, Luis] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna Valencia, Spain, Email: s.tortajada@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001041587900052 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5612  
Permanent link to this record
 

 
Author Bombacigno, F.; Moretti, F.; Boudet, S.; Olmo, G.J. url  doi
openurl 
  Title Landau damping for gravitational waves in parity-violating theories Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 009 - 29pp  
  Keywords Gravitational waves in GR and beyond: theory; modified gravity; gravitational waves / experiments; dark matter experiments  
  Abstract We discuss how tensor polarizations of gravitational waves can suffer Landau damping in the presence of velocity birefringence, when parity symmetry is explicitly broken. In particular, we analyze the role of the Nieh-Yan and Chern-Simons terms in modified theories of gravity, showing how the gravitational perturbation in collisionless media can be characterized by a subluminal phase velocity, circumventing the well-known results of General Relativity and allowing for the appearance of the kinematic damping. We investigate in detail the connection between the thermodynamic properties of the medium, such as temperature and mass of the particles interacting with the gravitational wave, and the parameters ruling the parity violating terms of the models. In this respect, we outline how the dispersion relations can give rise in each model to different regions of the wavenumber space, where the phase velocity is subluminal, superluminal or does not exist. Quantitative estimates on the considered models indicate that the phenomenon of Landau damping is not detectable given the sensitivity of present-day instruments.  
  Address [Bombacigno, F.; Moretti, F.; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Carrer Doctor Moliner 50, Valencia 46100, Spain, Email: flavio2.bombacigno@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001040875600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5624  
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenology of the simplest linear seesaw mechanism Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 221 - 48pp  
  Keywords Specific BSM Phenomenology; Sterile or Heavy Neutrinos; Baryon; Lepton Number Violation; Other Weak Scale BSM Models  
  Abstract The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable μ-> e gamma rates as well as distinctive signatures in the production and decay of heavy neutrinos ( N-i) and the charged Higgs boson (H-+/-) arising from the second scalar doublet. We have found that production processes such as e(+) e(-) -> NN, e- gamma -> NH- and e(+) e(-) -> H (+) H- followed by the decay chain H-+/--> l(+/-) (i) N, N -> l`(+/-) (j) W (-/+) leads to striking lepton number violation signatures at high energies which may probe the Majorana nature of neutrinos.  
  Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: aditya.batra@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001039968700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5605  
Permanent link to this record
 

 
Author Dreiner, H.K.; Koay, Y.S.; Kohler, D.; Martin Lozano, V.; Montejo Berlingen, J.; Nangia, S.; Strobbe, N. url  doi
openurl 
  Title The ABC of RPV: classification of R-parity violating signatures at the LHC for small couplings Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 215 - 52pp  
  Keywords Supersymmetry; Specific BSM Phenomenology  
  Abstract We perform a classification of all potential supersymmetric R-parity violating signatures at the LHC to address the question: are existing bounds on supersymmetric models robust, or are there still signatures not covered by existing searches, allowing LHCscale supersymmetry to be hiding? We analyze all possible scenarios with one dominant RPV trilinear coupling at a time, allowing for arbitrary LSPs and mass spectra. We consider direct production of the LSP, as well as production via gauge-cascades, and find 6 different experimental signatures for the LL <overline> E -case, 6 for the LQ <overline> D -case, and 5 for the <overline> U <overline> D <overline> D -case; together these provide complete coverage of the RPV-MSSM landscape. This set of signatures is confronted with the existing searches by ATLAS and CMS. We find all signatures have been covered at the LHC, although not at the sensitivity level needed to probe the direct production of all LSP types. For the case of a dominant LL <overline> E -operator, we use CheckMATE to quantify the current lower bounds on the supersymmetric masses and find the limits to be comparable to or better than the R-parity conserving case. Our treatment can be easily extended to scenarios with more than one non-zero RPV coupling.  
  Address [Dreiner, Herbi K.; Koehler, Dominik; Nangia, Saurabh] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: dreiner@uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001039968700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5604  
Permanent link to this record
 

 
Author Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S. url  doi
openurl 
  Title 5D Elko spinor field non-minimally coupled to nonmetricity in f (Q) gravity Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 843 Issue Pages 138029 - 8pp  
  Keywords Elko field; Dark matter; Thick brane; Symmetric teleparallel gravity  
  Abstract This paper aims to investigate the localization of the five-dimensional spinor field known as Elko (dual-helicity eigenspinors of the charge conjugation operator) by employing a Yukawa-like geometrical coupling in which the Elko field is non-minimally coupled to nonmetricity scalar Q. We adopt the braneworld scenarios in which the first-order formalism with sine-Gordon and linear superpotentials is employed to obtain the warp factors. A linear function supports the zero-mode trapping within the geometric coupling, leading to the same effective potential as the scalar field. Moreover, an exotic term must be added to obtain real-valued massive modes. Such modes are investigated through the Schrodinger-like approach.  
  Address [Belchior, F. M.; Moreira, A. R. P.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pico,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001039072300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5594  
Permanent link to this record
 

 
Author Real, D.; Calvo, D. doi  openurl
  Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 7 Pages 326 - 14pp  
  Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition  
  Abstract Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.  
  Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001038900800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5593  
Permanent link to this record
 

 
Author Cosme, C.; Figueroa, D.G.; Loayza, N. url  doi
openurl 
  Title Gravitational wave production from preheating with trilinear interactions Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 023 - 30pp  
  Keywords physics of the early universe; primordial gravitational waves (theory); gravita-tional waves; sources; particle physics-cosmology connection  
  Abstract We investigate the production of gravitational waves (GWs) during preheating with monomial/polynomial inflationary potentials, considering a trilinear coupling & phi;x2 between a singlet inflaton & phi; and a daughter scalar field x. For sufficiently large couplings, the trilinear interaction leads to an exponential production of x particles and, as a result, a large stochastic GW background (SGWB) is generated throughout the process. We study the linear and non-linear dynamics of preheating with lattice simulations, following the production of GWs through all relevant stages. We find that large couplings lead to SGWBs with amplitudes today that can reach up to h2 �(0) GW <^> 5 & BULL; 10-9. These backgrounds are however peaked at high frequencies fp > 5 & BULL; 106 Hz, which makes them undetectable by current/planned GW observatories. As the amount of GWs produced is in any case remarkable, we discuss the prospects for probing the SGWB indirectly by using constraints on the effective number of relativistic species in the universe Neff.  
  Address [Cosme, Catarina; Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV,C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001038638500007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5660  
Permanent link to this record
 

 
Author Banerjee, P.; Coutinho, A.; Engel, T.; Gurgone, A.; Signer, A.; Ulrich, Y. url  doi
openurl 
  Title High-precision muon decay predictions for ALP searches Type Journal Article
  Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue 1 Pages 021 - 38pp  
  Keywords  
  Abstract We present an improved theoretical prediction of the positron energy spectrum for the polarised Michel decay & mu;+ & RARR; e+ & nu;e & nu; over bar & mu;. In addition to the full next-to-next-to-leading order correction of order & alpha;2 in the electromagnetic coupling, we include logarithmically enhanced terms at even higher orders. Logarithms due to collinear emission are included at next-to-leading accuracy up to order & alpha;4. At the endpoint of the Michel spectrum, soft photon emission results in large logarithms that are resummed up to next-to-next-to leading logarithmic accuracy. We apply our results in the context of the MEG II and Mu3e experiments to estimate the impact of the theory error on the branching ratio sensitivity for the lepton-flavour-violating decay & mu;+ & RARR; e+X of a muon into an axion-like particle X.  
  Address [Banerjee, Pulak] Zhejiang Univ, Zhejiang Inst Modern Phys, Dept Phys, Hangzhou 310027, Peoples R China  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001038392400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5595  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva