|   | 
Details
   web
Records
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V.
Title Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei Type Journal Article
Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.
Volume 53 Issue 6 Pages 161 - 8pp
Keywords Structure functions; Deep inelastic scattering; EMC effect; Nuclear dynamics
Abstract We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.
Address [Canal, C. A. Garcia] Univ La Plata, Dept Phys, Cc 67, RA-1900 La Plata, Argentina, Email: ttarutina@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001087936700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5766
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L.
Title Electron scattering and neutrino physics Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 12 Pages 120501 - 34pp
Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering
Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001086874300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5748
Permanent link to this record
 

 
Author Pla, S.; Winstanley, E.
Title Equivalence of the adiabatic expansion and Hadamard renormalization for a charged scalar field Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 2 Pages 025004 - 22pp
Keywords
Abstract We examine the relationship between three approaches (Hadamard, DeWitt-Schwinger, and adiabatic) to the renormalization of expectation values of field operators acting on a charged quantum scalar field. First, we demonstrate that the DeWitt-Schwinger representation of the Feynman Green's function is a particular case of the Hadamard representation. Next, we restrict attention to a spatially flat Friedmann-Lemaitre-Robertson-Walker universe with time-dependent, purely electric, background electromagnetic field, considering two-, three-, and four-dimensional space-times. Working to the order required for the renormalization of the stress-energy tensor, we find the adiabatic and DeWitt-Schwinger expansions of the Green's function when the space-time points are spatially separated. In two and four dimensions, the resulting DeWitt-Schwinger and adiabatic expansions are identical. In three dimensions, the DeWittSchwinger expansion contains terms of adiabatic order 4 that are not necessary for the renormalization of the stress-energy tensor and hence absent in the adiabatic expansion. The equivalence of the DeWittSchwinger and adiabatic approaches to renormalization in the scenario considered is thereby demonstrated in even dimensions. In odd dimensions the situation is less clear and further investigation is required in order to determine whether adiabatic renormalization is a locally covariant renormalization prescription.
Address [Pla, Silvia] Kings Coll London, Dept Phys, Strand Bldg,Strand Campus, London WC2R 2LS, England, Email: silvia.pla_garcia@kcl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085808200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5756
Permanent link to this record
 

 
Author Brandao, P.C.S.; Song, J.; Abreu, L.M.; Oset, E.
Title B+ decay to K+ ηη with (ηη) from the D bar-D(3720) bound state Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 5 Pages 054004 - 6pp
Keywords
Abstract We search for a B decay mode where one can find a peak for a DD bound state predicted in effective theories and in lattice QCD calculations, which has also been claimed from some reactions that show an accumulated strength in D D over bar production at threshold. We find a good candidate in the B+-> K+eta eta reaction, by looking at the eta eta mass distribution. The reaction proceeds via a first step in which one has the B+-> D*+ D-0 reaction followed by D*(+) (s) decay to (DK+)-K-0 and a posterior fusion of D-0 over bar D-0 to eta eta, implemented through a triangle diagram that allows the D-0 over bar D-0 to be virtual and to produce the bound state. The choice of eta eta to see the peak is based on results of calculations that find the eta eta among the light pseudoscalar channels with stronger coupling to the D D over bar bound state. We find a neat peak around the predicted mass of that state in the eta eta mass distribution, with an integrated branching ratio for B+-> K+ (D D, bound); (D D, bound) -> eta eta of the order of 1.5 x 10(-4), a large number for hadronic B decays, which should motivate its experimental search.
Address [Brandao, Pedro C. S.; Abreu, Luciano M.; Oset, E.] Univ Fed Bahia, Inst Fis, Campus Ondina, BR-40170115 Salvador, BA, Brazil, Email: pedro.brandao@ufba.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085561600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5765
Permanent link to this record
 

 
Author ANTARES Collaboration (Reeb, N. et al); Alves, S.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Studying bioluminescence flashes with the ANTARES deep-sea neutrino telescope Type Journal Article
Year 2023 Publication Limnology and Oceanography-Methods Abbreviated Journal Limnol. Oceanogr. Meth.
Volume 21 Issue 11 Pages 734-760
Keywords
Abstract We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.
Address [Reeb, Nico; Hutschenreuter, Sebastian; Zehetner, Philipp; Ensslin, Torsten] Max Planck Inst Astrophys, Informat Field Theory Grp, Garching, Germany, Email: nreeb@mpa-garching.mpg.de
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1541-5856 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085083500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5787
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 190 - 35pp
Keywords Dark Matter and Double Beta Decay (experiments); Rare Decay
Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in Xe-136, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr & aacute;neo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu-trinoless double beta decay search. The analysis considers the combination of 271.6 days of Xe-136-enriched data and 208.9 days of 136Xe-depleted data. A detailed background mod-eling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 +/- 0.01 kg of Xe-136-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T-1/2(0 nu) > 5.5x10(23) -1.3x10(24) yr range, depending on the method. The presented techniques stand as a pro of-of-concept for the searches to be implemented with larger NEXT detectors.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085073500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5798
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Model-independent measurement of charm mixing parameters in Bbar → D0(→ K0Sπ+π-)μ-νbar_μX decays Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 5 Pages 052005 - 17pp
Keywords
Abstract A measurement of charm mixing and CP-violating parameters is reported, using B over bar -> D0(-> K0S pi+pi-)x mu- nu over bar μX decays reconstructed in proton-proton collisions collected by the LHCb experiment during the years 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb-1. The measured mixing and CP-violating parameters are xCP = [4.29 1 1.48(stat) 1 0.26(syst)] x 10-3, yCP = [12.61 1 3.12(stat) 1 0.83(syst)] x 10-3, Ax = [-0.77 1 0.93(stat) 1 0.28(syst)] x 10-3, Ay = [3.01 1 1.92(stat) 1 0.26(syst)] x 10-3. The results are complementary to and consistent with previous measurements. A combination with the recent LHCb analysis of D*+ -> D0(-> K0S pi+ pi-)pi+ decays is reported.
Address [Baptista de Souza Leite, J.; Bediaga, I. B.; Cruz Torres, M.; De Freitas Carneiro Da Graca, U.; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: timothy.david.evans@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085071700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5801
Permanent link to this record
 

 
Author Wang, D.
Title Pantheon plus tomography and Hubble tension Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 9 Pages 813 - 12pp
Keywords
Abstract The recently released Type Ia supernovae (SNe Ia) sample, Pantheon+, is an updated version of Pantheon and has very important cosmological implications. To explore the origin of the enhanced constraining power and internal correlations of datasets in different redshifts, we perform a comprehensively tomographic analysis of the Pantheon+ sample without and with the Cepheid host distance calibration, respectively. Specifically, we take two binning methods to analyze the Pantheon+ sample, i.e., equal redshift interval and equal supernovae number for each bin. For the case of equal redshift interval, after dividing the sample to 10 bins, the first bin in the redshift range z is an element of [0.00122, 0.227235] dominates the constraining power of the whole sample. For the case of equal supernovae number, the first three low redshift bins prefer a large matter fraction Omega(m) and only the sixth bin gives a relatively low cosmic expansion rate H-0. For both binning methods, we find no obvious evidence of evolution of H-0 and Omega(m) at the 2 sigma confidence level. The inclusion of the SHOES calibration can significantly compress the parameter space of background dynamics of the universe in each bin. When not considering the calibration, combining the Pantheon+ sample with cosmic microwave background, baryon acoustic oscillations, cosmic chronometers, galaxy clustering and weak lensing data, we give the strongest 1 sigma constraint H-0 = 67.88 +/- 0.42kms(-1) Mpc(-1). However, the addition of the calibration leads to a global shift of the parameter space from the combined constraint and H-0 = 68.66 +/- 0.42 km s(-1) Mpc(-1), which is inconsistent with the Planck-2018 result at about 2 sigma confidence level.
Address [Wang, Deng] Univ Valencia, Inst Fis Corpuscular CSIC, Paterna 46980, Spain, Email: cstar@nao.cas.cn
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085063100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5749
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Measurement of the Prompt D0 Nuclear Modification Factor in p-Pb Collisions at √SNN=8.16 TeV Type Journal Article
Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 131 Issue 10 Pages 102301 - 12pp
Keywords
Abstract The production of prompt D0 mesons in proton-lead collisions in both the forward and backward rapidity regions at a center-of-mass energy per nucleon pair of √SNN= = 8.16 TeV is measured by the sNN LHCb experiment. The nuclear modification factor of prompt D0 mesons is determined as a function of the transverse momentum pT, and the rapidity in the nucleon-nucleon center-of-mass frame y*. In the forward rapidity region, significantly suppressed production with respect to pp collisions is measured, which provides significant constraints on models of nuclear parton distributions and hadron production down to the very low Bjorken-x region of similar to 10-5. In the backward rapidity region, a suppression with a significance of 2.0-3.8 standard deviations compared to parton distribution functions in a nuclear environment expectations is found in the kinematic region of pT 6 GeV/c and -3.25 < y* < -2.5, corresponding to x similar to 0.01.
Address [Leite, J. Baptista de Souza; Bediaga, I. B.; Torres, M. Cruz; Da Graca, U. De Freitas Carneiro; Miranda, J. M. De; dos Reis, A. C.; Falcao, L. N.; Fantini, L.; Gomes, A.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085061700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5845
Permanent link to this record
 

 
Author CMS and CALICE Collaborations (Acar, B. et al); Irles, A.
Title Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08014 - 32pp
Keywords Calorimeters; Large detector systems for particle and astroparticle physics; Radiation-hard detectors; Si microstrip and pad detectors
Abstract The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.
Address [Caraway, B.; Dittmann, J.; Hatakeyama, K.; Kanuganti, A. R.; Wilson, J. S.] Baylor Univ, Waco, TX 76706 USA, Email: Seema.Sharma@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001085057700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5784
Permanent link to this record