|   | 
Details
   web
Records
Author Gelmini, G.B.; Takhistov, V.; Witte, S.J.
Title Casting a wide signal net with future direct dark matter detection experiments Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 009 - 55pp
Keywords dark matter detectors; dark matter experiments; dark matter theory
Abstract As dark matter (DM) direct detection experiments continue to improve their sensitivity they will inevitably encounter an irreducible background arising from coherent neutrino scattering. This so-called “neutrino floor” may significantly reduce the sensitivity of an experiment to DM-nuclei interactions, particularly if the recoil spectrum of the neutrino background is approximately degenerate with the DM signal. This occurs for the conventionally considered spin-independent (SI) or spin-dependent (SD) interactions. In such case, an increase in the experiment's exposure by multiple orders of magnitude may not yield any significant increase in sensitivity. The typically considered SI and SD interactions, however, do not adequately reflect the whole landscape of the well-motivated DM models, which includes other interactions. Since particle DM has not been detected yet in laboratories, it is essential to understand and maximize the detection capabilities for a broad variety of possible models and signatures. In this work we explore the impact of the background arising from various neutrino sources on the discovery potential of a DM signal for a large class of viable DM-nucleus interactions and several potential futuristic experimental settings, with different target elements. For some momentum suppressed cross sections, large DM particle masses and heavier targets, we find that there is no suppression of the discovery limits due to neutrino backgrounds. Further, we explicitly demonstrate that inelastic scattering, which could appear in models with multicomponent dark sectors, would help to lift the signal degeneracy associated with the neutrino floor. This study could assist with mapping out the optimal DM detection strategy for the next generation of experiments.
Address [Gelmini, Graciela B.; Takhistov, Volodymyr; Witte, Samuel J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium (up)
Area Expedition Conference
Notes WOS:000437422800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3646
Permanent link to this record
 

 
Author Folgado, M.G.; Gomez-Vargas, G.A.; Rius, N.; Ruiz de Austri, R.
Title Probing the sterile neutrino portal to Dark Matter with gamma rays Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 002 - 20pp
Keywords dark matter theory; particle physics – cosmology connection; neutrino theory
Abstract Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center gamma-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center gamma-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 GeV less than or similar to M-N < M-DM. Such values are compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies in the Milky Way halo, which rule out dark matter masses below similar to 50 GeV ( 90 GeV), for sterile neutrino masses M-N less than or similar to MDM ( M-N << M-DM). We also estimate the impact of AMS-02 anti-proton data on this scenario.
Address [Folgado, Miguel G.; Rius, Nuria; Ruiz de Austri, Roberto] Univ Valencia, CSIC, Dept Fis Teor, C-Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium (up)
Area Expedition Conference
Notes WOS:000440591500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3681
Permanent link to this record
 

 
Author Cermeño, M.; Perez-Garcia, M.A.; Lineros, R.A.
Title Enhanced neutrino emissivities in pseudoscalar-mediated dark matter annihilation in neutron stars Type Journal Article
Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 863 Issue 2 Pages 157 - 9pp
Keywords dark matter; neutrinos; stars: neutron
Abstract We calculate neutrino emissivities from self-annihilating dark matter (DM) (chi) in the dense and hot stellar interior of a (proto)neutron star. Using a model where DM interacts with nucleons in the stellar core through a pseudoscalar boson (a) we find that the neutrino production rates from the dominant reaction channels chi -> nu(nu) over bar or chi chi -> aa, with subsequent decay of the mediator a -> nu(nu) over bar, could locally match and even surpass those of the standard neutrinos from the modified nuclear URCA processes at early ages. We find that the emitting region can be localized in a tiny fraction of the star (less than a few percent of the core volume) and the process can last its entire lifetime for some cases under study. We discuss the possible consequences of our results for stellar cooling in light of existing DM constraints.
Address [Cermeno, M.; Perez-Garcia, M. A.] Univ Salamanca, Dept Fundamental Phys, Plaza Merced S-N, E-37008 Salamanca, Spain, Email: marinacgavilan@usal.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium (up)
Area Expedition Conference
Notes WOS:000442222700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3696
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Palmeiro, B.; Simon, A.; Sorel, M.; Martinez-Lema, G.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C.; Yahlali, N.
Title Measurement of radon-induced backgrounds in the NEXT double beta decay experiment Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 112 - 27pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract The measurement of the internal Rn-222 activity in the NEXT-White detector during the so-called Run-II period with Xe-136-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by Rn-222 and its alpha-emitting progeny. The specific activity is measured to be (38.1 +/- 2.2 (stat.) +/- 5.9 (syst.)) mBq/m(3). Radon-induced electrons have also been characterized from the decay of the Bi-214 daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.1 counts/yr in the neutrinoless double beta decay sample.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: sorel@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium (up)
Area Expedition Conference
Notes WOS:000448191500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3779
Permanent link to this record
 

 
Author Gomez, M.E.; Lola, S.; Ruiz de Austri, R.; Shafi, Q.
Title Confronting SUSY GUT With Dark Matter, Sparticle Spectroscopy and Muon (g – 2) Type Journal Article
Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages 127 - 9pp
Keywords grand unification; supersymmetry; dark matter; LHC; sparticle spectroscopy
Abstract We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, SO(10) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We identify characteristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to SO(10), giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.
Address [Gomez, Mario E.] Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Huelva, Spain, Email: mario.gomez@dfa.uhu.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium (up)
Area Expedition Conference
Notes WOS:000450940000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3808
Permanent link to this record