toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mavromatos, N.E.; Mitsou, V.A. url  doi
openurl 
  Title Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos Type Journal Article
  Year 2020 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 35 Issue 23 Pages 2030012 - 81pp  
  Keywords Magnetic monopoles; electromagnetism; theory; experimental techniques; searches; LHC; ATLAS; MoEDAL; IceCube; ANTARES  
  Abstract In this review, we discuss recent developments in both the theory and the experimental searches of magnetic monopoles in past, current and future colliders and in the Cosmos. The theoretical models include, apart from the standard Grand Unified Theories, extensions of the Standard Model that admit magnetic monopole solutions with finite energy and masses that can be as light as a few TeV. Specifically, we discuss, among other scenarios, modified Cho-Maison monopoles and magnetic monopoles in (string-inspired, higher derivative) Born-Infeld extensions of the hypercharge sector of the Standard Model. We also outline the conditions for which effective field theories describing the interaction of monopoles with photons are valid and can be used for result interpretation in monopole production at colliders. The experimental part of the review focuses on, past and present, cosmic and collider searches, including the latest bounds on monopole masses and magnetic charges by the ATLAS and MoEDAL experiments at the LHC, as well as prospects for future searches.  
  Address [Mavromatos, Nick E.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: nikolaos.mavromatos@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000563095400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4516  
Permanent link to this record
 

 
Author Ruhr, F. et al; Escobar, C.; Miñano, M. doi  openurl
  Title Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 979 Issue Pages 164430 - 6pp  
  Keywords Particle physics; Tracking detectors; ATLAS; HL-LHC; Test beam  
  Abstract In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.  
  Address [Ruehr, F.; Argos, C. Garcia; Hauser, M.; Moos, F.; Rodriguez, A. Rodriguez; Sperlich, D.; Wiik-Fuchs, L.] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany, Email: frederik.ruehr@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000573295200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4548  
Permanent link to this record
 

 
Author Fernandez-Tejero, J.; Bartl, U.; Docke, M.; Fadeyev, V.; Fleta, C.; Hacker, J.; Hommels, B.; Lacasta, C.; Parzefall, U.; Soldevila, U.; Stocker, G.; Ullan, M.; Unno, Y. doi  openurl
  Title Design and evaluation of large area strip sensor prototypes for the ATLAS Inner Tracker detector Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 981 Issue Pages 164536 - 6pp  
  Keywords ATLAS; Silicon strip sensors; Large area silicon sensors; Layout design; Prototype evaluation; Market survey  
  Abstract The ATLAS community is facing the last stages prior to the production of the upgraded silicon strip Inner Tracker for the High-Luminosity Large Hadron Collider. An extensive Market Survey was carried out in order to evaluate the capability of different foundries to fabricate large area silicon strip sensors, satisfying the ATLAS specifications. The semiconductor manufacturing company, Infineon Technologies AG, was one of the two foundries, along with Hamamatsu Photonics K.K., that reached the last stage of the evaluation for the production of the new devices. The full prototype wafer layout for the participation of Infineon, called ATLAS17LS-IFX, was designed using a newly developed Python-based Automatic Layout Generation Tool, able to rapidly design sensors with different characteristics and dimensions based on a few geometrical and technological input parameters. This work presents the layout design process and the results obtained from the evaluation of the new Infineon large area sensors before and after proton and neutron irradiations, up to fluences expected in the inner layers of the future ATLAS detector.  
  Address [Fernandez-Tejero, J.; Fleta, C.; Ullan, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000581799800023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4579  
Permanent link to this record
 

 
Author Hara, K. et al; Escobar, C.; Garcia, C.; Lacasta, C.; Miñano, M.; Soldevila, U. doi  openurl
  Title Charge collection study with the ATLAS ITk prototype silicon strip sensors ATLAS17LS Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 983 Issue Pages 164422 - 6pp  
  Keywords ATLAS ITk; Microstrip sensor; Charge collection; Radiation damage  
  Abstract The inner tracker of the ATLAS detector is scheduled to be replaced by a completely new silicon-based inner tracker (ITk) for the Phase-II of the CERN LHC (HL-LHC). The silicon strip detector covers the volume 40 < R < 100 cm in the radial and vertical bar z vertical bar <300 cm in the longitudinal directions. The silicon sensors for the detector will be fabricated using the n(+)-on-p 6-inch wafer technology, for a total of 22,000 wafers. Intensive studies were carried out on the final prototype sensors ATLAS17LS fabricated by Hamamatsu Photonics (HPK). The charge collection properties were examined using penetrating Sr-90 beta-rays and the ALIBAVA fast readout system for the miniature sensors of 1 cm xl cm in area. The samples were irradiated by protons in the 27 MeV Birmingham Cyclotron, the 70 MeV CYRIC at Tohoku University, and the 24 GeV CERN-PS, and by neutrons at Ljubljana TAIGA reactor for fluence values up to 2 x 10(15) n(eq)/cm(2). The change in the charge collection with fluence was found to be similar to the previous prototype ATLAS12, and acceptable for the ITk. Sensors with two active thicknesses, 300 μm (standard) and 240 μm (thin), were compared and the difference in the charge collection was observed to be small for bias voltages up to 500 V. Some samples were also irradiated with gamma radiation up to 2 MGy, and the full depletion voltage was found to decrease with the dose. This was caused by the Compton electrons due to the( 60)Co gamma radiation. To summarize, the design of the ATLAS17LS and technology for its fabrication have been verified for implementation in the ITk. We are in the stage of sensor pre-production with the first sensors already delivered in January of 2020.  
  Address [Hara, K.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan, Email: hara@hep.px.tsukuba.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000581808300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4606  
Permanent link to this record
 

 
Author Carrio, F. doi  openurl
  Title The Data Acquisition System for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator Type Journal Article
  Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 69 Issue 4 Pages 687-695  
  Keywords Large Hadron Collider; Data acquisition; Field programmable gate arrays; Clocks; Detectors; Computer architecture; Microprocessors; ATLAS tile calorimeter (TileCal); data acquisition (DAQ) systems; field-programmable gate array (FPGA); high energy physics; high-speed electronics  
  Abstract The tile calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the large hadron collider (LHC). In 2025, the LHC will be upgraded leading to the high luminosity LHC (HL-LHC). The HL-LHC will deliver an instantaneous luminosity up to seven times larger than the LHC nominal luminosity. The ATLAS Phase-II upgrade (2025-2027) will accommodate the subdetectors to the HL-LHC requirements. As part of this upgrade, the majority of the TileCal on-detector and off-detector electronics will be replaced using a new readout strategy, where the on-detector electronics will digitize and transmit digitized detector data to the off-detector electronics at the bunch crossing frequency (40 MHz). In the counting rooms, the off-detector electronics will compute reconstructed trigger objects for the first-level trigger and will store the digitized samples in pipelined buffers until the reception of a trigger acceptance signal. The off-detector electronics will also distribute the LHC clock to the on-detector electronics embedded within the digital data stream. The TileCal Phase-II upgrade project has undertaken an extensive research and development program that includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture envisaged for the HL-LHC. The Demonstrator module equipped with the latest version of the on-detector electronics was built and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition (TDAQ), and the timing, trigger, and command (TTC) systems. This article describes in detail the main hardware and firmware components of the clock distribution and data acquisition systems for the Demonstrator module, focusing on the TilePPr Demonstrator.  
  Address [Carrio, F.] Inst Fis Corpuscular CSIC UV, Paterna 46980, Spain, Email: fernando.carrio@cern.ch  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000803113800016 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5244  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva