toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alvarez-Ruso, L.; Hernandez, E.; Nieves, J.; Vicente Vacas, M.J. url  doi
openurl 
  Title Watson's theorem and the N Delta(1232) axial transition Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 014016 - 16pp  
  Keywords (up)  
  Abstract We present a new determination of the N Delta axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger C-5(A) (0), in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.  
  Address [Alvarez-Ruso, L.; Nieves, J.] Ctr Mixto CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368324700003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2521  
Permanent link to this record
 

 
Author Fernandez-Soler, P.; Sun, Z.F.; Nieves, J.; Oset, E. url  doi
openurl 
  Title The rho(omega) B*(B) interaction and states of J=0, 1, 2 Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 2 Pages 82 - 12pp  
  Keywords (up)  
  Abstract In this work, we study systems composed of a rho/omega and B* meson pair. We find three bound states in isospin, spin-parity channels (1/2, 0(+)), (1/2, 1(+)), and (1/2, 2(+)). The state with J = 2 can be a good candidate for the B-2*(5747). We also study the rho B system, and a bound state with mass 5728 MeV and width around 20 MeV is obtained, which can be identified with the B-1(5721) resonance. In the case of I = 3/2, one obtains repulsion and, thus, no exotic (molecular) mesons in this sector are generated in the approach.  
  Address [Fernandez-Soler, P.; Sun, Zhi-Feng; Oset, E.] Ctr Mixto Univ Valencia CSIC Inst Invest Paterna, Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: Pedro.Fernandez@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375284100002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2658  
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Oset, E.; Sun, Z.F.; Liu, X. url  doi
openurl 
  Title Can X(5568) be described as a B-s pi, B(K)over-bar resonant state? Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 757 Issue Pages 515-519  
  Keywords (up)  
  Abstract The DO Collaboration has recently seen a resonant-like peak in the B-s pi invariant mass spectrum, claimed to be a new state called X(5568). Using a B-s pi-B (K) over bar coupled channel analysis, implementing unitarity, and with the interaction derived from Heavy Meson Chiral Perturbation Theory, we are able to reproduce the reported spectrum, with a pole that can be associated to the claimed X(5568) state, and with mass and width in agreement with the ones reported in the experimental analysis. However, if the T-matrix regularization is performed by means of a momentum cutoff, the value for the latter needed to reproduce the spectrum is Lambda = 2.80 +/- 0.04 GeV, which is much larger than a “natural” value Lambda similar or equal to 1 GeV. In view of this, it is difficult to interpret the nature of this new state. This state would not qualify as a resonance dynamically generated by the unitarity loops. Assuming the observed peak to correspond to a physical state, we make predictions for partners in the D, D*, and B* sectors. Their observation (or lack thereof) would shed light into this issue.  
  Address [Albaladejo, Miguel; Nieves, Juan; Oset, Eulogio; Sun, Zhi-Feng] Univ Valencia, CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC,Ctr Mixto, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376800300072 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2698  
Permanent link to this record
 

 
Author Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J. url  doi
openurl 
  Title Z(c)(3900): What has been really seen? Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 755 Issue Pages 337-342  
  Keywords (up)  
  Abstract The Z(c)(+/-)(3900)/Z(c)(+/-)(3885) resonant structure has been experimentally observed in the Y(4260) -> J/Psi pi pi and Y(4260) -> (D) over bar* D pi decays. This structure is intriguing since it is a prominent candidate of an exotic hadron. Yet, its nature is unclear so far. In this work, we simultaneously describe the (D) over bar* D and J/Psi pi invariant mass distributions in which the Z(c) peak is seen using amplitudes with exact unitarity. Two different scenarios are statistically acceptable, where the origin of the Z(c) state is different. They correspond to using energy dependent or independent (D) over bar *D S-wave interaction. In the first one, the Z(c) peak is due to a resonance with a mass around the D (D) over bar* threshold. In the second one, the Z(c) peak is produced by a virtual state which must have a hadronic molecular nature. In both cases the two observations, Z(c)(+/-)(3900) and Z(c)(+/-)(3885), are shown to have the same common origin, and a (D) over bar *D bound state solution is not allowed. Precise measurements of the line shapes around the D (D) over bar* threshold are called for in order to understand the nature of this state.  
  Address [Albaladejo, Miguel; Hidalgo-Duque, Carlos; Nieves, Juan] Ctr Mixto CSIC Univ Valencia, Inst Invest Paterna, Inst Fis Corpuscular, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373568100047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2711  
Permanent link to this record
 

 
Author Lu, J.X.; Chen, H.X.; Guo, Z.H.; Nieves, J.; Xie, J.J.; Geng, L.S. url  doi
openurl 
  Title Lambda(c)(2595) resonance as a dynamically generated state: The compositeness condition and the large N-c evolution Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 11 Pages 114028 - 16pp  
  Keywords (up)  
  Abstract Recent studies have shown that the well-established Lambda(c) (2595) resonance contains a large meson-baryon component, which can vary depending on the specific formalism. In this work, we examine such a picture by utilizing the compositeness condition and the large number of colors (N-c) expansion. We examine three different models fulfilling two body unitarily in coupled-channels, and adopting renormalization schemes where the mass of the Lambda(c)(2595) resonance is well described, but not necessarily its width, since we do not consider three body channels and work at the isospin symmetric limit. Both approximations might have an effect larger on the width than on the mass. In this context, our studies show that the compositeness of the Lambda(c)(2595) depends on the number of considered coupled channels, and on the particular regularization scheme adopted in the unitary approaches and, therefore, is model dependent. In addition, we perform an exploratory study of the Lambda(c)(2595) in the large N-c expansion, within a scheme involving only the pi Sigma(c) and K Xi(c)', channels, whose dynamics is mostly fixed by chiral symmetry. In this context and formulating the leading-order interaction as a function of N-c, we show that for moderate N-c > 3 values, the mass and width of the Lambda(c)(2595) deviate from those of a genuine qqq baryon, implying the relevance of meson-baryon components in its wave function. Furthermore, we study the properties of the Lambda(c)(2595), in the strict N-c -> infinity limit, using an extension of the chiral Weinberg-Tomozawa interaction to an arbitrary number of flavors and colors. This latter study hints at the possible existence of a (perhaps) subdominant qqq component in the Lambda(c)(2595) resonance wave function, which would become dominant when the number of colors gets sufficiently large.  
  Address [Lu, Jun-Xu; Chen, Hua-Xing; Geng, Li-Sheng] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378306600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2745  
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Oset, E.; Jido, D. url  doi
openurl 
  Title Ds0*(2317) and DK scattering in B decays from BaBar and LHCb data Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 6 Pages 300 - 8pp  
  Keywords (up)  
  Abstract We study the experimental DK invariant mass spectra of the reactions B+ -> (D) over bar (DK+)-D-0-K-0, B-0 -> D-(DK+)-K-0 (measured by the BaBar collaboration) and B-s -> pi(+DK-)-K-0 measured by the LHCb collaboration), where an enhancement right above the threshold is seen. We show that this enhancement is due to the presence of D-s0*(2317), which is a D K bound state in the I (J(P)) = 0(0(+)) sector. We employ a unitarized amplitude with an interaction potential fixed by heavy meson chiral perturbation theory. We obtain a mass M-Ds0* = 2315(-17) (+12 +10)(-5) MeV, and we also show, by means of theWeinberg compositeness condition, that the DK component in the wave function of this state is P-DK = 70(-6 -8)(+4 +4) %, where the first (second) error is statistical (systematic).  
  Address [Albaladejo, M.; Nieves, J.; Oset, E.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto,CSIC, Aptd 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386034600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2841  
Permanent link to this record
 

 
Author Cincioglu, E.; Nieves, J.; Ozpineci, A.; Yilmazer, A.U. url  doi
openurl 
  Title Quarkonium Contribution to Meson Molecules Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 10 Pages 576 - 25pp  
  Keywords (up)  
  Abstract Starting from a molecular picture for the X(3872) resonance, this state and its J(PC) = 2(++) heavy-quark spin symmetry partner [X-2(4012)] are analyzed within a model which incorporates possible mixings with 2P charmonium (c (c) over bar) states. Since it is reasonable to expect the bare chi(c1)(2P) to be located above the D (D) over bar* threshold, but relatively close to it, the presence of the charmonium state provides an effective attraction that will contribute to binding the X(3872), but it will not appear in the 2(++) sector. Indeed in the latter sector, the chi(c2)(2P) should provide an effective small repulsion, because it is placed well below the D*(D) over bar* threshold. We show how the 1(++) and 2(++) bare charmonium poles are modified due to the D-(*)(D) over bar ((*)) loop effects, and the first one is moved to the complex plane. The meson loops produce, besides some shifts in the masses of the charmonia, a finite width for the 1(++) dressed charmonium state. On the other hand, X(3872) and X-2(4012) start developing some charmonium content, which is estimated by means of the compositeness Weinberg sum rule. It turns out that in the heavy-quark limit, there is only one coupling between the 2P charmonia and the D-(*)(D) over bar ((*)) pairs. We also show that, for reasonable values of this coupling, leading to X(3872) molecular probabilities of around 70-90%, the X2 resonance destabilizes and disappears from the spectrum, becoming either a virtual state or one being located deep into the complex plane, with decreasing influence in the D*(D) over bar* scattering line. Moreover, we also discuss how around 10-30% charmonium probability in the X(3872) might explain the ratio of radiative decays of this resonance into psi(2S) gamma and J/psi gamma Finally, we qualitatively discuss within this scheme, the hidden bottom flavor sector, paying a special attention to the implications for the X-b and Xb(2) states, heavy-quark spin-flavor partners of the X(3872).  
  Address [Cincioglu, E.; Yilmazer, A. U.] Ankara Univ, Dept Engn Phys, Ankara, Turkey, Email: elif.cincioglu@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387139800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2856  
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J. url  doi
openurl 
  Title Z(c)(3900): confronting theory and lattice simulations Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 10 Pages 573 - 9pp  
  Keywords (up)  
  Abstract We consider a recent T -matrix analysis by Albaladejo et al. (Phys Lett B 755: 337, 2016), which accounts for the J/psi pi and D*(D) over bar coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z(c)(3900)(+/-). Within such scheme, the data can be similarly well described in two different scenarios, where Z(c)(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91: 014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z(c)(3900) state.  
  Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388981700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2877  
Permanent link to this record
 

 
Author Guo, F.K.; Meissner, U.G.; Nieves, J.; Yang, Z. url  doi
openurl 
  Title Remarks on the P-c structures and triangle singularities Type Journal Article
  Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 52 Issue 10 Pages 318 - 6pp  
  Keywords (up)  
  Abstract It was proposed that the narrow P-c(4450) structure observed by the LHCb Collaboration in the reaction Lambda(b) -> J/psi pK might be due to a triangle singularity around the chi(c1)-proton threshold at 4.45 GeV. We discuss the occurrence of a similar triangle singularity in the J/psi p invariant mass distribution for the decay Lambda(b) -> J/psi p pi, which could explain the bump around 4.45 GeV in the data. More precise measurements of this process would provide valuable information towards an understanding of the P-c structures.  
  Address [Guo, Feng-Kun] Chinese Acad Sci, Inst Theoret Phys, Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: fkguo@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391807700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2914  
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Two-pole structure of the D-0*(2400) Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 767 Issue Pages 465-469  
  Keywords (up)  
  Abstract The so far only known charmed non-strange scalar meson is dubbed as D-0(*)(2400) in the Review of Particle Physics. We show, within the framework of unitarized chiral perturbation theory, that there are in fact two (I = 1/2, J(P) = 0(+)) poles in the region of the D-0(*)( 2400) in the coupled-channel D pi, D eta and D-s (K) over bar scattering amplitudes. With all the parameters previously fixed, we predict the energy levels for the coupled-channel system in a finite volume, and find that they agree remarkably well with recent lattice QCD calculations. This successful description of the lattice data is regarded as a strong evidence for the two-pole structure of the D-0(*)( 2400). With the physical quark masses, the poles are located at (2105(-8)(+6) – i102(-12)(+10)) MeV and (2451(-26)(+36) – i134(-8)(+7)) MeV, with the largest couplings to the D pi and D-s (K) over bar channels, respectively. Since the higher pole is close to the D-s (K) over bar threshold, we expect it to show up as a threshold enhancement in the D-s (K) over bar invariant mass distribution. This could be checked by high-statistic data in future experiments. We also show that the lower pole belongs to the same SU(3) multiplet as the D-s0(*)(2317) state. Predictions for partners in the bottom sector are also given.  
  Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Ctr Mixto CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Aptd 22085, E-46071 Valencia, Spain, Email: albaladejo@um.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397861700070 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3025  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva