|   | 
Details
   web
Records
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R.
Title Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 113 - 44pp
Keywords (down) Lattice QCD; Kaon Physics
Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.
Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640574400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4789
Permanent link to this record
 

 
Author Yue, Z. et al; Algora, A.; Nacher, E.
Title Magnetic moments of thallium isotopes in the vicinity of magic N=126 Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 849 Issue Pages 138452 - 7pp
Keywords (down) Laser spectroscopy; Hyperfine structure; Magnetic dipole moments; Theory of finite Fermi systems
Abstract The magnetic dipole moments (mu) of Tl-209(g)(N =128) and Tl-207(m)(N = 126) have been measured for the first time using the in -source laser resonance -ionization spectroscopy technique with the Laser Ion Source and Trap (LIST) at ISOLDE (CERN). The application of the LIST suppresses the usually overwhelming background of the isobaric francium isotopes and allows access to heavy thallium isotopes with >207. The self -consistent theory of finite Fermi systems based on the energy density functional by Fayans et al. well describes the N dependence of μfor 1/2(+) thallium ground states, as well as μfor the 11/2(-) isomeric states in europium, gold and thallium isotopes. The inclusion of particle-vibration coupling leads to a better agreement between the theory and experiment for mu(Tl-g , I-pi = 1/2(+)). It is shown that beyond mean-field contributions tocannot be neglected at least for thallium isotopes with I-pi = 1/2(+).
Address [Yue, Z.; Andreyev, A. N.; Cubiss, J. G.] Univ York, Sch Phys Engn & Technol, York YO10 5DD, England, Email: zixuan.yue@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001180137800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5979
Permanent link to this record
 

 
Author LISA Cosmology Working Group (Auclair, P. et al); Figueroa, D.G.
Title Cosmology with the Laser Interferometer Space Antenna Type Journal Article
Year 2023 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.
Volume 26 Issue 1 Pages 5 - 254pp
Keywords (down) Laser Interferometer Space Antenna (LISA); Cosmology
Abstract The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.
Address [Auclair, Pierre; Caprini, Chiara; Mangiagli, Alberto; Papanikolaou, Theodoros; Pol, Alberto Roper; Steer, Daniele A.; Vennin, Vincent; Petiteau, Antoine] Univ Paris, CNRS, Lab Astroparticule & Cosmol, F-75013 Paris, France, Email: chairscoswg@gmail.com
Corporate Author Thesis
Publisher Springer Int Publ Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-3613 ISBN Medium
Area Expedition Conference
Notes WOS:001063967800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5755
Permanent link to this record
 

 
Author Curtin, D. et al; Hirsch, M.
Title Long-lived particles at the energy frontier: the MATHUSLA physics case Type Journal Article
Year 2019 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 82 Issue 11 Pages 116201 - 133pp
Keywords (down) Large Hadron Collider; long-lived particles; hierarchy problem; dark matter; baryogenesis; neutrinos; simplified models
Abstract We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the μm scale up to the Big Bang Nucleosynthesis limit of similar to 10(7) m. Neutral LLPs with lifetimes above similar to 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.
Address [Curtin, David] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada, Email: dcurtin@physics.utoronto.ca
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000499698000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4215
Permanent link to this record
 

 
Author Carrio, F.
Title The Data Acquisition System for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator Type Journal Article
Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 69 Issue 4 Pages 687-695
Keywords (down) Large Hadron Collider; Data acquisition; Field programmable gate arrays; Clocks; Detectors; Computer architecture; Microprocessors; ATLAS tile calorimeter (TileCal); data acquisition (DAQ) systems; field-programmable gate array (FPGA); high energy physics; high-speed electronics
Abstract The tile calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the large hadron collider (LHC). In 2025, the LHC will be upgraded leading to the high luminosity LHC (HL-LHC). The HL-LHC will deliver an instantaneous luminosity up to seven times larger than the LHC nominal luminosity. The ATLAS Phase-II upgrade (2025-2027) will accommodate the subdetectors to the HL-LHC requirements. As part of this upgrade, the majority of the TileCal on-detector and off-detector electronics will be replaced using a new readout strategy, where the on-detector electronics will digitize and transmit digitized detector data to the off-detector electronics at the bunch crossing frequency (40 MHz). In the counting rooms, the off-detector electronics will compute reconstructed trigger objects for the first-level trigger and will store the digitized samples in pipelined buffers until the reception of a trigger acceptance signal. The off-detector electronics will also distribute the LHC clock to the on-detector electronics embedded within the digital data stream. The TileCal Phase-II upgrade project has undertaken an extensive research and development program that includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture envisaged for the HL-LHC. The Demonstrator module equipped with the latest version of the on-detector electronics was built and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition (TDAQ), and the timing, trigger, and command (TTC) systems. This article describes in detail the main hardware and firmware components of the clock distribution and data acquisition systems for the Demonstrator module, focusing on the TilePPr Demonstrator.
Address [Carrio, F.] Inst Fis Corpuscular CSIC UV, Paterna 46980, Spain, Email: fernando.carrio@cern.ch
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000803113800016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5244
Permanent link to this record
 

 
Author CALICE Collaboration (Lai, S. et al); Irles, A.
Title Software compensation for highly granular calorimeters using machine learning Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 4 Pages P04037 - 28pp
Keywords (down) Large detector-systems performance; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors
Abstract A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.
Address [Lai, S.; Utehs, J.; Wilhahn, A.] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: jack.rolph@desy.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001230094600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6128
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 12 Pages P12004 - 100pp
Keywords (down) Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000595944800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4643
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Moreno Llacer, M.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title ATLAS data quality operations and performance for 2015-2018 data-taking Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 4 Pages P04003 - 43pp
Keywords (down) Large detector systems for particle and astroparticle physics; Large detector-systems performance
Abstract The ATLAS detector at the Large Hadron Collider reads out particle collision data from over 100 million electronic channels at a rate of approximately 100 kHz, with a recording rate for physics events of approximately 1 kHz. Before being certified for physics analysis at computer centres worldwide, the data must be scrutinised to ensure they are clean from any hardware or software related issues that may compromise their integrity. Prompt identification of these issues permits fast action to investigate, correct and potentially prevent future such problems that could render the data unusable. This is achieved through the monitoring of detector-level quantities and reconstructed collision event characteristics at key stages of the data processing chain. This paper presents the monitoring and assessment procedures in place at ATLAS during 2015-2018 data-taking. Through the continuous improvement of operational procedures, ATLAS achieved a high data quality efficiency, with 95.6% of the recorded proton-proton collision data collected at root s = 13 TeV certified for physics analysis.
Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000534740000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4402
Permanent link to this record
 

 
Author Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E.
Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 69 Issue 4 Pages 696-702
Keywords (down) LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors
Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.
Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000803113800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5245
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title The Control Unit of the KM3NeT Data Acquisition System Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue Pages 107433 - 16pp
Keywords (down) KM3NeT; Data acquisition control; Neutrino detector; Astroparticle detector; 07.05.Hd; 29.85.Ca
Abstract The KM3NeT Collaboration runs a multi-site neutrino observatory in the Mediterranean Sea. Water Cherenkov particle detectors, deep in the sea and far off the coasts of France and Italy, are already taking data while incremental construction progresses. Data Acquisition Control software is operating off-shore detectors as well as testing and qualification stations for their components. The software, named Control Unit, is highly modular. It can undergo upgrades and reconfiguration with the acquisition running. Interplay with the central database of the Collaboration is obtained in a way that allows for data taking even if Internet links fail. In order to simplify the management of computing resources in the long term, and to cope with possible hardware failures of one or more computers, the KM3NeT Control Unit software features a custom dynamic resource provisioning and failover technology, which is especially important for ensuring continuity in case of rare transient events in multi-messenger astronomy. The software architecture relies on ubiquitous tools and broadly adopted technologies and has been successfully tested on several operating systems.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: cbozza@unisa.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000590251400011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4616
Permanent link to this record