|   | 
Details
   web
Records
Author AGATA Collaboration; Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.
Title Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 622 Issue 3 Pages 614-618
Keywords (up) Gamma spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors
Abstract The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the gamma-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the gamma rays originated outside the target, the new generation of position sensitive gamma-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the gamma rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back gamma rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.
Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000282562700017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 257
Permanent link to this record
 

 
Author Doncel, M.; Cederwall, B.; Gadea, A.; Gerl, J.; Kojouharov, I.; Martin, S.; Palit, R.; Quintana, B.
Title Performance and imaging capabilities of the DEGAS high-resolution gamma-ray detector array for the DESPEC experiment at FAIR Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 873 Issue Pages 36-38
Keywords (up) Gamma spectroscopy; Imaging; Position-sensitive Ge detectors
Abstract Monte Carlo simulations of one of the possible configurations of the imaging phase for the DEGAS spectrometer situated at the DESPEC/NUSTAR experiment have been performed. The geometry consists of the coupling of the high-resolution gamma spectroscopy array, AGATA, with a high-resolution segmented planar detector utilized as an implantation detector in a compact configuration. The sensitivity and performance of the array in terms of efficiency and imaging capability is deduced.
Address [Doncel, M.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool, Merseyside, England, Email: doncel@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000413823100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3349
Permanent link to this record
 

 
Author Zago, L. et al; Gadea, A.; Algora, A.
Title High-spin states in Po-212 above the alpha-decaying (18(+)) isomer Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 834 Issue Pages 137457 - 5pp
Keywords (up) gamma spectroscopy; Isomer spectroscopy; High-spin spectroscopy
Abstract The nucleus Po-212 has been produced through the fragmentation of a U-238 primary beam at 1GeV/nucleon at GSI, separated with the FRagment Separator, FRS, and studied via isomer gamma-decay spectroscopy with the RISING setup. Two delayed previously unknown gamma rays have been observed. One has been attributed to the E3 decay of a 21(-) isomeric state feeding the alpha-emitting 45-s (18(+)) high-spin isomer. The other gamma-ray line has been assigned to the decay of a higher-lying 23(+) metastable state. These are the first observations of high-spin states above the Po-212 (18(+)) isomer, by virtue of the selectivity obtained via ion-by-ion identification of U-238 fragmentation products. Comparison with shell-model calculations points to shortfalls in the nuclear interactions involving high- jproton and neutron orbitals, to which the region around Z similar to 100 is sensitive.
Address [Zago, L.; Lunardi, S.; Lenzi, S. M.; Mengoni, D.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy, Email: luca.zago@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000890050000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5457
Permanent link to this record
 

 
Author Hernandez-Prieto, A.; Quintana, B.; Martin, S.; Domingo-Pardo, C.
Title Study of accuracy in the position determination with SALSA, a gamma-scanning system for the characterization of segmented HPGe detectors Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 823 Issue Pages 98-106
Keywords (up) gamma-Camera; Virtual collimation; SAlamanca Lyso-based Scanning Array (SALSA); Segmented HPGe detectors
Abstract Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform gamma-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of 2 mm for large coaxial detectors and 1 mm for planar ones.
Address [Hernandez-Prieto, A.; Quintana, B.; Martin, S.] Univ Salamanca, Dept Fis Fundamental, Lab Radiac Ionizantes, C Espejo S-N, E-37008 Salamanca, Spain, Email: alvaro.prieto@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000374661600014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2664
Permanent link to this record
 

 
Author Domingo-Pardo, C.; Goel, N.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Didierjean, F.; Duchene, G.; Sigward, M.H.
Title A novel gamma-ray imaging method for the pulse-shape characterization of position sensitive semiconductor radiation detectors Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 643 Issue 1 Pages 79-88
Keywords (up) gamma-detector; Pulse shape analysis; Tracking; Semiconductor
Abstract A new technique for the pulse-shape characterization of gamma-ray position sensitive germanium detectors is presented. This method combines the pulse shape comparison scan (PSCS) principle with a gamma-ray imaging technique. The latter is provided by a supplementary, high performance, position sensitive gamma-ray scintillator detector. We describe the basic aspects of the method and we show measurements made for the study of pulse-shapes in a non-segmented planar HPGe detector. A preliminary application of the PSCS is carried out, although a more detailed investigation is being performed with highly segmented position sensitive detectors.
Address [Domingo-Pardo, C; Goel, N; Engert, T; Gerl, J; Kojouharov, I; Schaffner, H] GSI Helmholtzzentnim Schwenonenforsch mbH, D-64291 Darmstadt, Germany, Email: cesar.domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000292442700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 694
Permanent link to this record