toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Allanach, B.C.; Bednyakov, A.; Ruiz de Austri, R. url  doi
openurl 
  Title Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5 Type Journal Article
  Year 2015 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 189 Issue Pages 192-206  
  Keywords (down) Sparticle; MSSM  
  Abstract We explore the effects of three-loop minimal supersymmetric standard model renormalisation group equation terms and some leading two-loop threshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 2-3 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale alpha(s) and the other two unified gauge couplings changes by 0.1% due to the higher order corrections and the difference between unification scale bottom-tau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production cross-section (often around 30%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections. Program Summary Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with boundary conditions on supersymmetry breaking parameters, as well as the weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Program title: SOFTSUSY Catalogue identifier: ADPMv50 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPMv50.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 240528 No. of bytes in distributed program, including test data, etc.: 2597933 Distribution format: tar.gz Programming language: C++, Fortran. Computer: Personal computer. Operating system: Tested on Linux 3.4.6. Word size: 64 bits. Classification: 11.1, 11.6. External routines: At least GiNaC1.3.5 [1] and CLN1.3.1 (both freely obtainable from http://www.ginac.de). Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPMv40 Journal reference of previous version: Comput. Phys. Comm. 185 (2014) 2322 Solution method: Nested iterative algorithm. Reasons for new version: Extension to include additional two and three-loop terms. Summary of revisions: All quantities in the minimal supersymmetric standard model are extended to have three-loop renormalisation group equations (including 3-family mixing) in the limit of real parameters and some leading two-loop threshold corrections are incorporated to the third family Yukawa couplings and the strong gauge coupling. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is non-physical for some reason (for example because the electroweak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the real R-parity conserving minimal supersymmetric standard model (MSSM) only. Running time: A minute per parameter point. The tests provided with the package only take a few seconds to run.  
  Address [Allanach, B. C.] Univ Cambridge, DAMTP, CMS, Cambridge CB3 0WA, England, Email: rruiz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350087300021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2142  
Permanent link to this record
 

 
Author Barrio, J.; Etxebeste, A.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title Performance of VATA64HDR16 ASIC for medical physics applications based on continuous crystals and SiPMs Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P12001 - 12pp  
  Keywords (down) Solid state detectors; Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Front-end electronics for detector readout; Gamma detectors (scintillators, CZT, HPG, HgI etc)  
  Abstract Detectors based on Silicon Photomultipliers (SiPMs) coupled to continuous crystals are being tested in medical physics applications due to their potential high resolution and sensitivity. To cope with the high granularity required for a very good spatial resolution, SiPM matrices with a large amount of elements are needed. To be able to read the information coming from each individual channel, dedicated ASICs are employed. The VATA64HDR16 ASIC is a 64-channel, charge-sensitive amplifier that converts the collected charge into a proportional current or voltage signal. A complete assessment of the suitability of that ASIC for medical physics applications based on continuous crystals and SiPMs has been carried out. The input charge range is linear from 20 pC up to 55 pC. The energy resolution obtained at 511 keV is 10% FWHM with a LaBr3 crystal and 16% FWHM with a LYSO crystal. A coincidence timing resolution of 24 ns FWHM is obtained with two LYSO crystals.  
  Address [Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Solaz, C.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: John.Barrio@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369998500034 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2548  
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J. url  doi
openurl 
  Title Linear response of homogeneous nuclear matter with energy density functionals Type Journal Article
  Year 2015 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 563 Issue Pages 1-67  
  Keywords (down) Skyrme functional; Linear response theory; Landau parameters  
  Abstract Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.  
  Address [Pastore, A.] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: davesne@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350515400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2143  
Permanent link to this record
 

 
Author Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Sensitivities to neutrino electromagnetic properties at the TEXONO experiment Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 750 Issue Pages 459-465  
  Keywords (down) Reactor neutrinos; Coherent elastic neutrino-nucleus scattering (CENNS); Weak mixing angle; Neutrino magnetic moment; Neutrino charge radius; Quenching factor  
  Abstract The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.  
  Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Div Theoret Phys, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000364250600075 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2472  
Permanent link to this record
 

 
Author Abbas, G.; Celis, A.; Li, X.Q.; Lu, J.; Pich, A. url  doi
openurl 
  Title Flavour-changing top decays in the aligned two-Higgs-doublet model Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 005 - 26pp  
  Keywords (down) Rare Decays; Beyond Standard Model; Heavy Quark Physics  
  Abstract We perform a complete one-loop computation of the two-body flavour-changing top decays t --> ch and t --> cV (V = gamma, Z), within the aligned two-Higgs-doublet model. We evaluate the impact of the model parameters on the associated branching ratios, taking into account constraints from flavour data and measurements of the Higgs properties. Assuming that the 125 GeV Higgs corresponds to the lightest CP-even scalar of the CP-conserving aligned two-Higgs-doublet model, we find that the rates for such flavour-changing top decays lie below the expected sensitivity of the future high-luminosity phase of the LHC. Measurements of the Higgs signal strength in the di-photon channel are found to play an important role in limiting the size of the t --> ch decay rate when the charged scalar of the model is light.  
  Address [Abbas, Gauhar; Pich, Antonio] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: Gauhar.Abbas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355745800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva