|   | 
Details
   web
Records
Author Vague, J.; Melgarejo, J.C.; Boria, V.E.; Guglielmi, M.; Moreno, R.; Reglero, M.; Mata, R.; Montero, I.; Gonzalez-Iglesias, D.; Gimeno, B.; Gomez, A.; Vegas, A.; Raboso, D.
Title Experimental Validation of Multipactor Effect for Ferrite Materials Used in L- and S-Band Nonreciprocal Microwave Components Type Journal Article
Year 2019 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.
Volume 67 Issue 6 Pages 2151-2161
Keywords (down) Ferrites; ferromagnetic resonance; gadolinium-aluminum garnet; Holmium garnet; multipactor; space applications; wideband nonreciprocal devices
Abstract This paper reports on the experimental measurement of power threshold levels for the multipactor effect between samples of ferrite material typically used in the practical implementation of L-and S-band circulators and isolators. For this purposes, a new family of wideband, nonreciprocal rectangular waveguide structures loaded with ferrites has been designed with a full-wave electromagnetic simulation tool. The design also includes the required magnetostatic field biasing circuits. The multipactor breakdown power levels have also been predicted with an accurate electron tracking code using measured values for the secondary electron yield (SEY) coefficient. The measured results agree well with simulations, thereby fully validating the experimental campaign.
Address [Vague, Joaquin; Carlos Melgarejo, Juan; Boria, Vicente E.; Guglielmi, Marco; Reglero, Marta] Univ Politecn Valencia, iTEAM, Dept Comunicac, E-46022 Valencia, Spain, Email: jvague@dcom.upv.es;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes WOS:000470969100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4056
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B.
Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 10 Issue Pages 18843-18854
Keywords (down) Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating
Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000760714900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5139
Permanent link to this record
 

 
Author Mata, R.; Cros, A.; Gimeno, B.; Raboso, D.
Title Secondary electron emission yield in thick dielectric materials: a comparison between Kelvin probe and capacitive methods Type Journal Article
Year 2024 Publication Journal of Physics D Abbreviated Journal J. Phys. D
Volume 57 Issue 40 Pages 405302 - 9pp
Keywords (down) dielectrics; secondary electron emission yield; Multipactor in space devices
Abstract The recent high demand of secondary electron emission yield (SEY) measurements in dielectric materials from space industry has driven SEY laboratories to improve their facilities and measurement techniques. SEY determination by the common capacitive method, also known as pulsed method, is well accepted and has given satisfactory results in most cases. Nevertheless, the samples under study must be prepared according to the experimental limitations of the technique, i.e. they should be manufactured separated from the devices representing faithfully the surface state of the own device and be as thin as possible. A method based on the Kelvin probe (KP) is proposed here to obtain the SEY characteristics of electrically floating Platinum, Kapton and Teflon placed over dielectric spacers with thicknesses ranging from 1.6 to 12.1 mm. The results are compared with those of the capacitive method and indicate that KP SEY curves are less sensitive to spacer thickness. An explanation based on the literature is also given. In all, we have established that KP is better suited for the analysis of dielectric samples thicker than 3 mm.
Address [Mata, R.; Gimeno, B.] Ciudad Politecn Innovac, Val Space Consortium, Edificio 8G,Acceso B,Planta B, Valencia 46022, Spain, Email: rafael.mata@uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Medium
Area Expedition Conference
Notes WOS:001269188200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6203
Permanent link to this record
 

 
Author Berenguer, A.; Coves, A.; Gimeno, B.; Bronchalo, E.; Boria, V.E.
Title Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide Type Journal Article
Year 2019 Publication IEEE Microwave and Wireless Components Letters Abbreviated Journal IEEE Microw. Wirel. Compon. Lett.
Volume 29 Issue 9 Pages 595-597
Keywords (down) Dielectric; multipactor effect; rectangular waveguide; RF breakdown; Secondary Electron Yield (SEY); waveguide transformer
Abstract This letter presents the experimental study of the multipactor threshold in a partially dielectric-loaded rectangular waveguide, whose results validate a multipactor model recently developed by the authors, which includes the charge distribution appearing on the dielectric surface during the multipactor discharge. First, the variation of the multipactor RF voltage threshold has been theoretically analyzed in different waveguide configurations: in an empty waveguide, and also in the cases of a one-sided and two-sided dielectric-loaded waveguides. To reach this aim, an in-house Monte Carlo simulation tool has been developed. The Secondary Electron Yield (SEY) of the metallic and dielectric materials used in the numerical simulations have been measured experimentally. Finally, an aluminum WR-75 symmetric E-plane rectangular waveguide transformer has been designed and fabricated, in which several multipaction tests have been carried out to validate the in-house software tool, demonstrating an excellent agreement between the simulation results and the experimental data.
Address [Berenguer, Andres; Coves, Angela; Bronchalo, Enrique] Univ Miguel Hernandez Elche, Dept Commun Engn, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes WOS:000489754400009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4170
Permanent link to this record
 

 
Author Martinez-Reviriego, P.; Esperante, D.; Grudiev, A.; Gimeno, B.; Blanch, C.; Gonzalez-Iglesias, D.; Fuster-Martinez, N.; Martin-Luna, P.; Martinez, E.; Menendez, A.; Fuster, J.
Title Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments Type Journal Article
Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 12 Issue Pages 1345237 - 12pp
Keywords (down) dielectric assist accelerating (DAA) structures; radio frequency (RF); LINAC; hadrontherapy; standing wave
Abstract Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.
Address [Martinez-Reviriego, Pablo; Esperante, Daniel; Gimeno, Benito; Blanch, Cesar; Gonzalez-Iglesias, Daniel; Fuster-Martinez, Nuria; Martin-Luna, Pablo; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.martinez.reviriego@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:001162373700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5953
Permanent link to this record