toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Santos, A.C.L.; Muniz, C.R.; Maluf, R.V. url  doi
openurl 
  Title Yang-Mills Casimir wormholes in D=2+1 Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 24pp  
  Keywords (down) Wormholes; Exact solutions; black holes and black hole thermodynamics in GR and beyond; gravity  
  Abstract This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.  
  Address [Santos, Alana C. L.; Maluf, Roberto V.] Univ Fed Ceara UFC, Departamento Fis, Campus Pici,6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: alanasantos@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001196198800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6031  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. url  doi
openurl 
  Title Impact of curvature divergences on physical observers in a wormhole space-time with horizons Type Journal Article
  Year 2016 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 33 Issue 11 Pages 115007 - 12pp  
  Keywords (down) Singularities; black holes; metric-affine geometry  
  Abstract The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.  
  Address [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377442000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2728  
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum dress for a naked singularity Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 760 Issue Pages 244-248  
  Keywords (down) Semiclassical gravity; Quantum backreaction; Cosmic censorship; Black holes; Naked singularities; BTZ  
  Abstract We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.  
  Address [Casals, Marc] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382890500037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2804  
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
  Year 2023 Publication Physics Abbreviated Journal Physics  
  Volume 5 Issue 4 Pages 968-982  
  Keywords (down) quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon  
  Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130983900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5858  
Permanent link to this record
 

 
Author Fernandez-Silvestre, D.; Foo, J.; Good, M.R.R. url  doi
openurl 
  Title On the duality of Schwarzschild-de Sitter spacetime and moving mirror Type Journal Article
  Year 2022 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 39 Issue 5 Pages 055006 - 18pp  
  Keywords (down) QFT in curved spacetime; black holes; cosmological horizons; moving mirrors  
  Abstract The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.  
  Address [Fernandez-Silvestre, Diego] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain, Email: diefer2@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000754064600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5130  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Mena, O.; Palomares-Ruiz, S. url  doi
openurl 
  Title A Brief Review on Primordial Black Holes as Dark Matter Type Journal Article
  Year 2021 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 8 Issue Pages 681084 - 10pp  
  Keywords (down) primordial black holes; dark matter; cosmology; accretion; 21 cm cosmology; gravitational waves; cosmic microwave background; microlensing  
  Abstract Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.  
  Address [Villanueva-Domingo, Pablo; Mena, Olga; Palomares-Ruiz, Sergio] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000660081700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4852  
Permanent link to this record
 

 
Author Bernal, N.; Munoz-Albornoz, V.; Palomares-Ruiz, S.; Villanueva-Domingo, P. url  doi
openurl 
  Title Current and future neutrino limits on the abundance of primordial black holes Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 068 - 38pp  
  Keywords (down) neutrino detectors; primordial black holes  
  Abstract Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.  
  Address [Bernal, Nicolas] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000882783900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5412  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons at particle accelerators Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 010 - 25pp  
  Keywords (down) modified gravity; Wormholes; quantum black holes  
  Abstract We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.  
  Address [Omla, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332711400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1733  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons as solitonic black hole remnants Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 011 - 10pp  
  Keywords (down) modified gravity; primordial black holes; Wormholes; quantum field theory on curved space  
  Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1532  
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 044 - 20pp  
  Keywords (down) modified gravity; gravity; GR black holes; Wormholes  
  Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507261900041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4252  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva