|   | 
Details
   web
Records
Author Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Palumbo, L.; Spizzo, V.; Mostacci, A.; Campogiani, G.; Persichelli, S.; Enomoto, A.; Higo, T.; Kakihara, K.; Kamitani, T.; Matsumoto, S.; Sugimura, T.; Yokoyama, K.; Verdu-Andres, S.
Title The C-Band accelerating structures for SPARC photoinjector energy upgrade Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P05004 - 24pp
Keywords (up) Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators); Accelerator Subsystems and Technologies; Instrumentation for FEL
Abstract The use of C-Band structures for electron acceleration and production of high quality beams has been proposed and adopted in several linac projects all over the world. The two main projects that adopted such type of structures are the Japanese Free Electron Laser (FEL) project in Spring-8 and the SwissFEL project at Paul Scherrer Institute (PSI). Also the energy upgrade of the SPARC photo-injector at LNF-INFN (Italy) from 150 to more than 240 MeV will be done by replacing a low gradient S-Band accelerating structure with two C-band structures. The structures are Traveling Wave (TW) and Constant Impedance (CI), have symmetric axial input couplers and have been optimized to work with a SLED RF input pulse. The paper presents the design criteria of the structures, the realization procedure and the low and high power RF test results on a prototype. The high power tests have been carried out by the Frascati INFN Laboratories in close collaboration with the Japanese Laboratory KEK. Experimental results confirmed the feasibility of the operation of the prototype at 50 MV/m with about 10(6) breakdowns per pulse per meter. Such high gradients have not been reached before in C-Band systems and demonstrated the possibility to use C-band accelerators, if needed, at such high field level. The results of the internal inspection of the structure after the high power test are also presented.
Address [Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.] Ist Nazl Fis Nucl, LNF, I-00044 Rome, Italy, Email: alesini@lnf.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320726000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1512
Permanent link to this record
 

 
Author Black, K.M. et al; Zurita, J.
Title Muon Collider Forum report Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages T02015 - 95pp
Keywords (up) Accelerator Applications; Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings- high energy (linear accelerators, synchrotrons); Large detector systems for particle and astroparticle physics
Abstract A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.
Address [Black, K. M.; Bose, T.; Dasu, S.; Everaerts, P.; Jia, H.; Lomte, S.; Pinna, D.; Venkatasubramanian, N.; Vuosalo, C.] Univ Wisconsin Madison, Madison, WI USA, Email: sergo@fnal.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185309300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6048
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Salt, J.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at E-beam=4 TeV Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P12006 - 41pp
Keywords (up) Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Radiation calculations; Simulation methods and programs
Abstract Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the FLUKA Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached.
Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000452068100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3826
Permanent link to this record
 

 
Author Scandale, W. et al; Lari, L.
Title Optimization of the crystal assisted collimation of the SPS beam Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 726 Issue 1-3 Pages 182-186
Keywords (up) Accelerator; Beam collimation; Crystal; Channeling
Abstract The possibility for optimization of crystal assisted collimation has been studied at the CERN SPS for stored beams of protons and Pb ions with 270 GeV/c per unit charge. A bent silicon crystal used as a primary collimator deflects halo particles in the channeling regime, directing them into a tungsten absorber. In channeling conditions a strong reduction of off-momentum particle numbers produced in the crystal and absorber, which form collimation leakage, has been observed in the first high dispersion (HD) area downstream. The present study shows that the collimation leakage is minimal for some values of the absorber offset relative to the crystal. The optimal offset value is larger for Pb ions because of their considerably larger ionization losses in the crystal, which cause large increases of particle betatron oscillation amplitudes. The optimal absorber offset allows obtaining maximal efficiency of crystal-assisted collimation.
Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: alexander.taratin@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000326482200020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1694
Permanent link to this record
 

 
Author Scandale, W et al; Lari, L.
Title Deflection of high energy protons by multiple volume reflections in a modified multi-strip silicon deflector Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B
Volume 338 Issue Pages 108-111
Keywords (up) Accelerator; Beam collimation; Crystal; Channeling; Volume reflection
Abstract The effect of multiple volume reflections in one crystal was observed in each of several bent silicon strips for 400 GeV/c protons. This considerably increased the particle deflections. Some particles were also deflected due to channeling in one of the subsequent strips. As a result, the incident beam was strongly spread because of opposite directions of the deflections. A modified multi-strip deflector produced by periodic grooves on the surface of a thick silicon plate was used for these measurements. This technique provides perfect mutual alignment between crystal strips. Such multi-strip deflector may be effective for collider beam halo collimation and a study is planned at the CERN SPS circulating beam.
Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Medium
Area Expedition Conference
Notes WOS:000343390400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1974
Permanent link to this record
 

 
Author Resta-Lopez, J.
Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P11010 - 19pp
Keywords (up) Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)
Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500035 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1697
Permanent link to this record
 

 
Author Marco-Hernandez, R.; Bau, M.; Ferrari, M.; Ferrari, V.; Pedersen, F.; Soby, L.
Title A Low-Noise Charge Amplifier for the ELENA Trajectory, Orbit, and Intensity Measurement System Type Journal Article
Year 2017 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 64 Issue 9 Pages 2465-2473
Keywords (up) Beam position monitor (BPM); charge sensitive amplifier; instrumentation for accelerators; low-noise amplifier; particle accelerators; printed circuits
Abstract A low-noise head amplifier has been developed for the extra low energy antiproton ring beam trajectory, orbit, and intensity measurement system at CERN. This system is based on 24 double-electrode electrostatic beam position monitors installed around the ring. A head amplifier is placed close to each beam position monitor to amplify the electrode signals and generate a difference and a sum signal. These signals are sent to the digital acquisition system, about 50 m away from the ring, where they are digitized and further processed. The beam position can be measured by dividing the difference signal by the sum signal while the sum signal gives information relative to the beam intensity. The head amplifier consists of two discrete charge preamplifiers with junction field effect transistor (JFET) inputs, a sum and a difference stage, and two cable drivers. Special attention has been paid to the amplifier printed circuit board design to minimize the parasitic capacitances and inductances at the charge amplifier stages to meet the gain and noise requirements. The measurements carried out on the head amplifier showed a gain of 40.5 and 46.5 dB for the sum and difference outputs with a bandwidth from 200 Hz to 75 MHz and an input voltage noise density lower than 400 pV/v Hz. Twenty head amplifiers have been already installed in the ring and they have been used to detect the first beam signals during the first commissioning stage in November 2016.
Address [Marco-Hernandez, Ricardo; Pedersen, Flemming; Soby, Lars] CERN, CH-1217 Meyrin, Switzerland, Email: rmarco@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000411029500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3298
Permanent link to this record
 

 
Author Beacham, J. et al; Martinez-Vidal, F.
Title Physics beyond colliders at CERN: beyond the Standard Model working group report Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 1 Pages 010501 - 114pp
Keywords (up) beyond standard Model; dark matter; dark sector; axions; particle physics; accelerators
Abstract The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.
Address [Beacham, J.] Duke Univ, Durham, NC 27708 USA, Email: Gaia.Lanfranchi@lnf.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000521343200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4341
Permanent link to this record
 

 
Author Agostini, P. et al; Mandal, S.
Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 48 Issue 11 Pages 110501 - 364pp
Keywords (up) deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics
Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000731762500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5067
Permanent link to this record
 

 
Author Poley, L. et al; Lacasta, C.; Soldevila, U.
Title Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P07023 - 12pp
Keywords (up) Inspection with x-rays; Si microstrip and pad detectors; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)
Abstract The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6.10(34) cm(-2) s(-1). A consequence of this increased luminosity is the expected radiation damage at 3000 fb(-1) after ten years of operation, requiring the tracking detectors to withstand fluences to over 1.10(16) 1 MeV n(eq)/cm(2) . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor – utilizing bi-metal readout layers – wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.
Address [Poley, L.; Bloch, I.; Diez, S.; Gregor, I. -M.; Lohwasser, K.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387763000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2872
Permanent link to this record