|   | 
Details
   web
Records
Author Cabello, J.; Torres-Espallardo, I.; Gillam, J.E.; Rafecas, M.
Title PET Reconstruction From Truncated Projections Using Total-Variation Regularization for Hadron Therapy Monitoring Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue (down) 5 Pages 3364-3372
Keywords
Abstract Hadron therapy exploits the properties of ion beams to treat tumors by maximizing the dose released to the target and sparing healthy tissue. With hadron beams, the dose distribution shows a relatively low entrance dose which rises sharply at the end of the range, providing the characteristic Bragg peak that drops quickly thereafter. It is of critical importance in order not to damage surrounding healthy tissues and/or avoid targeting underdosage to know where the delivered dose profile ends-the location of the Bragg peak. During hadron therapy, short-lived beta(+)-emitters are produced along the beam path, their distribution being correlated with the delivered dose. Following positron annihilation, two photons are emitted, which can be detected using a positron emission tomography (PET) scanner. The low yield of emitters, their short half-life, and the wash out from the target region make the use of PET, even only a few minutes after hadron irradiation, a challenging application. In-beam PET represents a potential candidate to estimate the distribution of beta(+)-emitters during or immediately after irradiation, at the cost of truncation effects and degraded image quality due to the partial rings required of the PET scanner. Time-of-flight (ToF) information can potentially be used to compensate for truncation effects and to enhance image contrast. However, the highly demanding timing performance required in ToF-PET makes this option costly. Alternatively, the use of maximum-a-posteriori-expectation-maximization (MAP-EM), including total variation (TV) in the cost function, produces images with low noise, while preserving spatial resolution. In this paper, we compare data reconstructed with maximum-likelihood-expectation-maximization (ML-EM) and MAP-EM using TV as prior, and the impact of including ToF information, from data acquired with a complete and a partial-ring PET scanner, of simulated hadron beams interacting with a polymethyl methacrylate (PMMA) target. The results show that MAP-EM, in the absence of ToF information, produces lower noise images and more similar data compared to the simulated beta(+) distributions than ML-EM with ToF information in the order of 200-600 ps. The investigation is extended to the combination of MAP-EM and ToF information to study the limit of performance using both approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827200023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1610
Permanent link to this record
 

 
Author Oliver, J.F.; Fuster-Garcia, E.; Cabello, J.; Tortajada, S.; Rafecas, M.
Title Application of Artificial Neural Network for Reducing Random Coincidences in PET Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue (down) 5 Pages 3399-3409
Keywords
Abstract Positron Emission Tomography (PET) is based on the detection in coincidence of the two photons created in a positron annihilation. In conventional PET, this coincidence identification is usually carried out through a coincidence electronic unit. An accidental coincidence occurs when two photons arising from different annihilations are classified as a coincidence. Accidental coincidences are one of the main sources of image degradation in PET. Some novel systems allow coincidences to be selected post-acquisition in software, or in real time through a digital coincidence engine in an FPGA. These approaches provide the user with extra flexibility in the sorting process and allow the application of alternative coincidence sorting procedures. In this work a novel sorting procedure based on Artificial Neural Network (ANN) techniques has been developed. It has been compared to a conventional coincidence sorting algorithm based on a time coincidence window. The data have been obtained from Monte-Carlo simulations. A small animal PET scanner has been implemented to this end. The efficiency (the ratio of correct identifications) can be selected for both methods. In one case by changing the actual value of the coincidence window used, and in the other by changing a threshold at the output of the neural network. At matched efficiencies, the ANN-based method always produces a sorted output with a smaller random fraction. In addition, two differential trends are found: the conventional method presents a maximum achievable efficiency, while the ANN-based method is able to increase the efficiency up to unity, the ideal value, at the cost of increasing the random fraction. Images reconstructed using ANN sorted data (no compensation for randoms) present better contrast, and those image features which are more affected by randoms are enhanced. For the image quality phantom used in the paper, the ANN method decreases the spill-over ratio by a factor of 18%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827200027 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1611
Permanent link to this record
 

 
Author Barrientos, D.; Gonzalez, V.; Bellato, M.; Gadea, A.; Bazzacco, D.; Blasco, J.M.; Bortolato, D.; Egea, F.J.; Isocrate, R.; Pullia, A.; Rampazzo, G.; Sanchis, E.; Triossi, A.
Title Multiple Register Synchronization With a High-Speed Serial Link Using the Aurora Protocol Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue (down) 5 Pages 3521-3525
Keywords
Abstract In this work, the development and characterization of a multiple synchronous registers interface communicating with a high-speed serial link and using the Aurora protocol is presented. A detailed description of the developing process and the characterization methods and hardware test benches are also included. This interface will implement the slow control buses of the digitizer cards for the second generation of electronics for the Advanced GAmma Tracking Array (AGATA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1612
Permanent link to this record
 

 
Author Egea, F.J. et al; Gadea, A.; Barrientos, D.; Huyuk, T.
Title Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue (down) 5 Pages 3526-3531
Keywords
Abstract This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1613
Permanent link to this record
 

 
Author Carrio, F.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Marin, C.; Moreno, P.; Sanchis, E.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Optical Link Card Design for the Phase II Upgrade of TileCal Experiment Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue (down) 4 Pages 1657-1663
Keywords High energy physics instrumentation computing; optical-fiber communication high-speed electronics; programmable logic devices
Abstract This paper presents the design of an optical link card developed in the frame of the R&D activities for the phase 2 upgrade of the TileCal experiment. This board, that is part of the evaluation of different technologies for the final choice in the next years, is designed as a mezzanine that can work independently or be plugged in the optical multiplexer board of the TileCal backend electronics. It includes two SNAP 12 optical connectors able to transmit and receive up to 75 Gb/s and one SFP optical connector for lower speeds and compatibility with existing hardware as the read out driver. All processing is done in a Stratix II GX field-programmable gate array (FPGA). Details are given on the hardware design, including signal and power integrity analysis, needed when working with these high data rates and on firmware development to obtain the best performance of the FPGA signal transceivers and for the use of the GBT protocol.
Address [Carrio, F; Gonzalez, V; Marin, C; Sanchis, E] Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain, Email: vicente.gonzalez@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000293975700037 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 722
Permanent link to this record