|   | 
Details
   web
Records
Author NEXT Collaboration (Martin-Albo, J. et al); Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Cervera-Villanueva, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Novella, P.; Palmeiro, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Sensitivity of NEXT-100 to neutrinoless double beta decay Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue (down) 5 Pages 159 - 30pp
Keywords Dark Matter and Double Beta Decay (experiments); Rare decay
Abstract NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0v beta beta) decay of Xe-136. The detector possesses two features of great value for 0v beta beta searches: energy resolution better than 1% FWHM at the Q value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 x 10(-4) counts keV(-1) kg(-1) yr(-1). Accordingly, the detector will reach a sensitivity to the 0v beta beta-decay half-life of 2.8 x 10(25) years (90% CL) for an exposure of 100 kg.year, or 6.0 x 10(25) years after a run of 3 effective years.
Address [Martin-Albo, J.; Munoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Carrion, J. V.; Cervera, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: justo.martin-albo@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000391745200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2928
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Measurement of the Xe-136 two-neutrino double-beta-decay half-life via direct background subtraction in NEXT Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 105 Issue (down) 5 Pages 055501 - 8pp
Keywords
Abstract We report a measurement of the half-life of the Xe-136 two-neutrino double-beta decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe-136-enriched and Xe-136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34(-0.46)(+0.80) (stat)(-0.17)(+0.30) (sys) x 10(21) yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-beta-decay searches.
Address [Novella, P.; Sorel, M.; Uson, A.; Carcel, S.; Carrion, J., V; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Vidal, J. Munoz; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: auson@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000810927800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5263
Permanent link to this record
 

 
Author Renner, J. et al; Romo-Luque, C.; Carrion, J.V.; Diaz, J.; Martinez, A.; Querol, M.; Rodriguez-Ponce, J.; Teruel-Pardo, S.
Title Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue (down) 5 Pages P05044 - 17pp
Keywords Cryogenic detectors; Gamma camera; SPECT; PET PET; CT; coronary CT angiography (CTA); Liquid detectors
Abstract New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.
Address [Romo-Luque, C.; Carrion, J. V.; Diaz, J.; Martinez, A.; Querol, M.; Rodriguez-Ponce, J.; Teruel-Pardo, S.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: paola.ferrario@dipc.org
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000811102400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5264
Permanent link to this record
 

 
Author NEXT Collaboration (Haefner, J. et al); Carcel, S.; Carrion, J.V.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A.
Title Demonstration of event position reconstruction based on diffusion in the NEXT-white detector Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue (down) 5 Pages 518 - 13pp
Keywords
Abstract Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias <1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks (E >= 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.
Address [Haefner, J.; Contreras, T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001228898800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6138
Permanent link to this record
 

 
Author NEXT Collaboration (Fernandes, A.F.M. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue (down) 4 Pages 034 - 18pp
Keywords Particle correlations and fluctuations; Photon production; Dark Matter and Double Beta Decay (experiments); Rare decay
Abstract High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by similar to 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: cristinam@uc.pt
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000525257400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4366
Permanent link to this record