toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Illana, A. et al; Perez-Vidal, R.M. doi  openurl
  Title Octupole correlations in the N = Z+2=56 110Xe nucleus Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 848 Issue (up) Pages 138371 - 7pp  
  Keywords Octupole deformations; Xe-110; N = Z=56 region; Fusion evaporation reactions  
  Abstract This letter reports on the first observation of an octupole band in the neutron-deficient (N = Z + 2) nucleus Xe-110. The Xe-110 nuclei were produced via the Fe-54(Ni-58,2n) fusion-evaporation reaction. The emitted gamma rays were detected using the jurogam 3 gamma-ray spectrometer, while the fusion-evaporation residues were separated with the MARA separator at the Accelerator Laboratory of the University of Jyv & auml;skyl & auml;, Finland. The experimental observation of the low-lying 3(-) and 5(-) states and inter-band E1 transitions between the ground-state band and the octupole band proves the importance of octupole correlations in this region. These new experimental data combined with theoretical calculations using the symmetry-conserving configuration-mixing method, based on a Gogny energy density functional, have been interpreted as an evidence of enhanced octupole correlations in neutron-deficient xenon isotopes.  
  Address [Illana, A.; Auranen, K.; Beliuskina, O.; Delafosse, C.; Eronen, T.; Ge, Z.; Geldhof, S.; Gins, W.; Grahn, T.; Greenlees, P. T.; Joukainen, H.; Julin, R.; Jutila, H.; Kankainen, A.; Leino, M.; Louko, J.; Luoma, M.; Nesterenko, D.; Ojala, J.; Pakarinen, J.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Saren, J.; Uusitalo, J.; Zimba, G. L.] Univ Jyvaskyla, Dept Phys, Accelerator Lab, POB 35, Jyvaskyla FI-40014, Finland, Email: andres.illana@ucm.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001139401700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5880  
Permanent link to this record
 

 
Author Stoppa, F.; Ruiz de Austri, R.; Vreeswijk, P.; Bhattacharyya, S.; Caron, S.; Bloemen, S.; Zaharijas, G.; Principe, G.; Vodeb, V.; Groot, P.J.; Cator, E.; Nelemans, G. url  doi
openurl 
  Title AutoSourceID-FeatureExtractor Optical image analysis using a two-step mean variance estimation network for feature estimation and uncertainty characterisation Type Journal Article
  Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 680 Issue (up) Pages A108 - 14pp  
  Keywords astronomical databases: miscellaneous; methods: data analysis; stars: imaging; techniques: image processing  
  Abstract Aims. In astronomy, machine learning has been successful in various tasks such as source localisation, classification, anomaly detection, and segmentation. However, feature regression remains an area with room for improvement. We aim to design a network that can accurately estimate sources' features and their uncertainties from single-band image cutouts, given the approximated locations of the sources provided by the previously developed code AutoSourceID-Light (ASID-L) or other external catalogues. This work serves as a proof of concept, showing the potential of machine learning in estimating astronomical features when trained on meticulously crafted synthetic images and subsequently applied to real astronomical data.Methods. The algorithm presented here, AutoSourceID-FeatureExtractor (ASID-FE), uses single-band cutouts of 32x32 pixels around the localised sources to estimate flux, sub-pixel centre coordinates, and their uncertainties. ASID-FE employs a two-step mean variance estimation (TS-MVE) approach to first estimate the features and then their uncertainties without the need for additional information, for example the point spread function (PSF). For this proof of concept, we generated a synthetic dataset comprising only point sources directly derived from real images, ensuring a controlled yet authentic testing environment.Results. We show that ASID-FE, trained on synthetic images derived from the MeerLICHT telescope, can predict more accurate features with respect to similar codes such as SourceExtractor and that the two-step method can estimate well-calibrated uncertainties that are better behaved compared to similar methods that use deep ensembles of simple MVE networks. Finally, we evaluate the model on real images from the MeerLICHT telescope and the Zwicky Transient Facility (ZTF) to test its transfer learning abilities.  
  Address [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131898100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5887  
Permanent link to this record
 

 
Author Stoppa, F.; Bhattacharyya, S.; Ruiz de Austri, R.; Vreeswijk, P.; Caron, S.; Zaharijas, G.; Bloemen, S.; Principe, G.; Malyshev, D.; Vodeb, V.; Groot, P.J.; Cator, E.; Nelemans, G. url  doi
openurl 
  Title AutoSourceID-Classifier Star-galaxy classification using a convolutional neural network with spatial information Type Journal Article
  Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 680 Issue (up) Pages A109 - 16pp  
  Keywords methods: data analysis; techniques: image processing; astronomical databases: miscellaneous; stars: imaging; Galaxies: statistics  
  Abstract Aims. Traditional star-galaxy classification techniques often rely on feature estimation from catalogs, a process susceptible to introducing inaccuracies, thereby potentially jeopardizing the classification's reliability. Certain galaxies, especially those not manifesting as extended sources, can be misclassified when their shape parameters and flux solely drive the inference. We aim to create a robust and accurate classification network for identifying stars and galaxies directly from astronomical images.Methods. The AutoSourceID-Classifier (ASID-C) algorithm developed for this work uses 32x32 pixel single filter band source cutouts generated by the previously developed AutoSourceID-Light (ASID-L) code. By leveraging convolutional neural networks (CNN) and additional information about the source position within the full-field image, ASID-C aims to accurately classify all stars and galaxies within a survey. Subsequently, we employed a modified Platt scaling calibration for the output of the CNN, ensuring that the derived probabilities were effectively calibrated, delivering precise and reliable results.Results. We show that ASID-C, trained on MeerLICHT telescope images and using the Dark Energy Camera Legacy Survey (DECaLS) morphological classification, is a robust classifier and outperforms similar codes such as SourceExtractor. To facilitate a rigorous comparison, we also trained an eXtreme Gradient Boosting (XGBoost) model on tabular features extracted by SourceExtractor. While this XGBoost model approaches ASID-C in performance metrics, it does not offer the computational efficiency and reduced error propagation inherent in ASID-C's direct image-based classification approach. ASID-C excels in low signal-to-noise ratio and crowded scenarios, potentially aiding in transient host identification and advancing deep-sky astronomy.  
  Address [Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Groot, P. J.; Nelemans, G.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: f.stoppa@astro.ru.nl  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131898100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5888  
Permanent link to this record
 

 
Author Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Dendooven, P.; Garcia Lopez, J.G.; Hueso-Gonzalez, F.; Jiméeez-Ramos, M.C.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G. doi  openurl
  Title Gamma-ray sources imaging and test-beam results with MACACO III Compton camera Type Journal Article
  Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica  
  Volume 117 Issue (up) Pages 103199 - 10pp  
  Keywords Hadron therapy; Compton camera; Scintillator crystals; Silicon photomultipliers  
  Abstract Hadron therapy is a radiotherapy modality which offers a precise energy deposition to the tumors and a dose reduction to healthy tissue as compared to conventional methods. However, methods for real-time monitoring are required to ensure that the radiation dose is deposited on the target. The IRIS group of IFIC-Valencia developed a Compton camera prototype for this purpose, intending to image the Prompt Gammas emitted by the tissue during irradiation. The system detectors are composed of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. After an initial characterization in the laboratory, in order to assess the system capabilities for future experiments in proton therapy centers, different tests were carried out in two facilities: PARTREC (Groningen, The Netherlands) and the CNA cyclotron (Sevilla, Spain). Characterization studies performed at PARTREC indicated that the detectors linearity was improved with respect to the previous version and an energy resolution of 5.2 % FWHM at 511 keV was achieved. Moreover, the imaging capabilities of the system were evaluated with a line source of 68Ge and a point-like source of 241Am-9Be. Images at 4.439 MeV were obtained from irradiation of a graphite target with an 18 MeV proton beam at CNA, to perform a study of the system potential to detect shifts at different intensities. In this sense, the system was able to distinguish 1 mm variations in the target position at different beam current intensities for measurement times of 1800 and 600 s.  
  Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1120-1797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001145147400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5892  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Menendez, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. doi  openurl
  Title The search for neutrinoless double-beta decay Type Journal Article
  Year 2024 Publication Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento  
  Volume 46 Issue (up) Pages 619-692  
  Keywords Neutrinos; Majorana; Double-beta decay; Nuclear matrix elements  
  Abstract Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.  
  Address [Gomez-Cadenas, Juan Jose; Monrabal, Francesc] Donostia Int Phys Ctr, ERC Basque Excellence Res Ctr, Donostia San Sebastian 20018, Spain, Email: jjgomezcadenas@dipc.org  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-697x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151173800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5915  
Permanent link to this record
 

 
Author Choi, K.Y.; Gong, J.O.; Joh, J.; Park, W.I.; Seto, O. url  doi
openurl 
  Title Light cold dark matter from non-thermal decay Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 845 Issue (up) Pages 138126 - 8pp  
  Keywords Dark matter; Non-thermal production; Axion; Q-ball; Dark matter; Non-thermal production; Axion; Q-ball; Dark matter; Non-thermal production; Axion; Q-ball  
  Abstract We investigate the mass range and the corresponding free-streaming length scale of dark matter produced non-thermally from decay of heavy objects which can be either dominant or sub-dominant at the moment of decay. We show that the resulting dark matter could be very light well below keV scale with a free-streaming length satisfying the Lyman-alpha constraints. We demonstrate two explicit examples for such light cold dark matter.  
  Address [Choi, Ki-Young; Joh, Junghoon] Sungkyunkwan Univ, Dept Phys, Dept Phys, Suwon 16419, South Korea, Email: kiyoungchoi@skku.edu;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001155183100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5942  
Permanent link to this record
 

 
Author Martinez-Reviriego, P.; Esperante, D.; Grudiev, A.; Gimeno, B.; Blanch, C.; Gonzalez-Iglesias, D.; Fuster-Martinez, N.; Martin-Luna, P.; Martinez, E.; Menendez, A.; Fuster, J. url  doi
openurl 
  Title Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments Type Journal Article
  Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue (up) Pages 1345237 - 12pp  
  Keywords dielectric assist accelerating (DAA) structures; radio frequency (RF); LINAC; hadrontherapy; standing wave  
  Abstract Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.  
  Address [Martinez-Reviriego, Pablo; Esperante, Daniel; Gimeno, Benito; Blanch, Cesar; Gonzalez-Iglesias, Daniel; Fuster-Martinez, Nuria; Martin-Luna, Pablo; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.martinez.reviriego@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162373700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5953  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Embedded software of the KM3NeT central logic board Type Journal Article
  Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 296 Issue (up) Pages 109036 - 15pp  
  Keywords Embedded software; Neutrino detectors; Synchronization networks  
  Abstract The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes. Program summary Program title: Embedded software for the KM3NeT CLB CPC Library link to program files: https://doi.org/10.17632/s847hpsns4.1 Licensing provisions: GNU General Public License 3 Programming language: C Nature of problem: The challenge for the embedded software in the KM3NeT neutrino telescope lies in orchestrating the Digital Optical Modules (DOMs) to achieve the synchronized data acquisition of the incoming optical signals. The DOMs are the crucial component responsible for capturing neutrino interactions deep underwater. The embedded software must configure and precisely time the operation of each DOM. Any deviation or timing mismatch could compromise data integrity, undermining the scientific value of the experiment. Therefore, the embedded software plays a critical role in coordinating, synchronizing, and operating these modules, ensuring they work in unison to capture and process neutrino signals accurately, ultimately advancing our understanding of fundamental particles in the Universe. Solution method: The embedded software on the DOMs provides a solution based on a C-based bare-metal application, operating without a real-time embedded OS. It is loaded into the RAM during FPGA configuration, consuming less than 256 kB of RAM. The software architecture comprises two layers: system software and application. The former offers OS-like features, including a multitasking scheduler, firmware updates, peripheral drivers, a UDP-based network stack, and error handling utilities. The application layer contains a state machine ensuring consistent program states. It is navigated via slow control events, including external inputs and autonomous responses. Subsystems within the application code control specific acquisition electronics components via the associated driver abstractions. Additional comments including restrictions and unusual features: Due to the operation conditions of the neutrino telescope, where access is restricted, the embedded software implements a fail-safe procedure to reconfigure the firmware where the embedded software runs.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: km3net-pc@km3net.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162587500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5961  
Permanent link to this record
 

 
Author Yue, Z. et al; Algora, A.; Nacher, E. doi  openurl
  Title Magnetic moments of thallium isotopes in the vicinity of magic N=126 Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 849 Issue (up) Pages 138452 - 7pp  
  Keywords Laser spectroscopy; Hyperfine structure; Magnetic dipole moments; Theory of finite Fermi systems  
  Abstract The magnetic dipole moments (mu) of Tl-209(g)(N =128) and Tl-207(m)(N = 126) have been measured for the first time using the in -source laser resonance -ionization spectroscopy technique with the Laser Ion Source and Trap (LIST) at ISOLDE (CERN). The application of the LIST suppresses the usually overwhelming background of the isobaric francium isotopes and allows access to heavy thallium isotopes with >207. The self -consistent theory of finite Fermi systems based on the energy density functional by Fayans et al. well describes the N dependence of μfor 1/2(+) thallium ground states, as well as μfor the 11/2(-) isomeric states in europium, gold and thallium isotopes. The inclusion of particle-vibration coupling leads to a better agreement between the theory and experiment for mu(Tl-g , I-pi = 1/2(+)). It is shown that beyond mean-field contributions tocannot be neglected at least for thallium isotopes with I-pi = 1/2(+).  
  Address [Yue, Z.; Andreyev, A. N.; Cubiss, J. G.] Univ York, Sch Phys Engn & Technol, York YO10 5DD, England, Email: zixuan.yue@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001180137800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5979  
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K. url  doi
openurl 
  Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
  Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica  
  Volume 118 Issue (up) Pages 103301 - 9pp  
  Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy  
  Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.  
  Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1120-1797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001178648400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5990  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva