Bouhova-Thacker, E., Kostyukhin, V., Koffas, T., Liebig, W., Limper, M., Piacquadio, G. N., et al. (2010). Expected Performance of Vertex Reconstruction in the ATLAS Experiment at the LHC. IEEE Trans. Nucl. Sci., 57(2), 760–767.
Abstract: In the harsh environment of the Large Hadron Collider at CERN (design luminosity of 10(34) cm(-2) s(-1)) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper is the expected performance of the vertex reconstruction used in the ATLAS experiment. The algorithms for the reconstruction of primary and secondary vertices as well as for finding photon conversions and vertex reconstruction in jets are described. The implementation of vertex algorithms which follows a very modular design based on object-oriented C++ is presented. A user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Expected tracking performance of the ATLAS Inner Tracker at the High-Luminosity LHC. J. Instrum., 20(2), P02018–49pp.
Abstract: The high-luminosity phase of LHC operations (HL-LHC), will feature a large increase in simultaneous proton-proton interactions per bunch crossing up to 200, compared with a typical leveling target of 64 in Run 3. Such an increase will create a very challenging environment in which to perform charged particle trajectory reconstruction, a task crucial for the success of the ATLAS physics program, and will exceed the capabilities of the current ATLAS Inner Detector (ID). A new all-silicon Inner Tracker (ITk) will replace the current ID in time for the start of the HL-LHC. To ensure successful use of the ITk capabilities in Run 4 and beyond, the ATLAS tracking software has been successfully adapted to achieve state-of-the-art track reconstruction in challenging high-luminosity conditions with the ITk detector. This paper presents the expected tracking performance of the ATLAS ITk based on the latest available developments since the ITk technical design reports.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). Performance of the ATLAS forward proton Time-of-Flight detector in Run 2. J. Instrum., 19(5), P05054–47pp.
Abstract: We present performance studies of the Time-of-Flight (ToF) subdetector of the ATLAS Forward Proton (AFP) detector at the LHC. Efficiencies and resolutions are measured using highstatistics data samples collected at low and moderate pile-up in 2017, the first year when the detectors were installed on both sides of the interaction region. While low efficiencies are observed, of the order of a few percent, the resolutions of the two ToF detectors measured individually are 21 ps and 28 ps, yielding an expected resolution of the longitudinal position of the interaction, z(vtx), in the central ATLAS detector of 5.3 +/- 0.6 mm. This is in agreement with the observed width of the distribution of the difference between..vtx measured independently by the central ATLAS tracker and by the ToF detector, of 6.0 +/- 2.0 mm.
|
Gololo, M. G. D., Carrio Argos, F., & Mellado, B. (2022). Tile Computer-on-Module for the ATLAS Tile Calorimeter Phase-II upgrades. J. Instrum., 17(6), P06020–14pp.
Abstract: The Tile PreProcessor (TilePPr) is the core element of the Tile Calorimeter (TileCal) off-detector electronics for High-luminosity Large Hadron Collider (HL-LHC). The TilePPr comprises FPGA-based boards to operate and read out the TileCal on-detector electronics. The Tile Computer on Module (TileCoM) mezzanine is embedded within TilePPr to carry out three main functionalities. These include remote configuration of on-detector electronics and TilePPr FPGAs, interface the TilePPr with the ATLAS Trigger and Data Acquisition (TDAQ) system, and interfacing the TilePPr with the ATLAS Detector Control System (DCS) by providing monitoring data. The TileCoM is a 10-layer board with a Zynq UltraScale+ ZU2CG for processing data, interface components to integrate with TilePPr and the power supply to be connected to the Advanced Telecommunication Computing Architecture carrier. A CentOS embedded Linux is deployed on the TileCoM to implement the required functionalities for the HL-LHC. In this paper we present the hardware and firmware developments of the TileCoM system in terms of remote programming, interface with ATLAS TDAQ system and DCS system.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). The ATLAS trigger system for LHC Run 3 and trigger performance in 2022. J. Instrum., 19(6), P06029–110pp.
Abstract: The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022-2025).
|
Mendez, V., Amoros, G., Garcia, F., & Salt, J. (2010). Emergent algorithms for replica location and selection in data grid. Futur. Gener. Comp. Syst., 26(7), 934–946.
Abstract: Grid infrastructures for e-Science projects are growing in magnitude terms. Improvements in data Grid replication algorithms may be critical in many of these infrastructures. This paper shows a decentralized replica optimization service, providing a general Emergent Artificial Intelligence (EAI) algorithm for the problem definition. Our aim is to set up a theoretical framework for emergent heuristics in Grid environments. Further, we describe two EAI approaches, the Particle Swarm Optimization PSO-Grid Multiswarm Federation and the Ant Colony Optimization ACO-Grid Asynchronous Colonies Optimization replica optimization algorithms, with some examples. We also present extended results with best performance and scalability features for PSO-Grid Multiswarrn Federation.
|
Peppa, V., Thomson, R. M., Enger, S. A., Fonseca, G. P., Lee, C. N., Lucero, J. N. E., et al. (2023). A MC-based anthropomorphic test case for commissioning model-based dose calculation in interstitial breast 192-Ir HDR brachytherapy. Med. Phys., 50(7), 4675–4687.
Abstract: PurposeTo provide the first clinical test case for commissioning of Ir-192 brachytherapy model-based dose calculation algorithms (MBDCAs) according to the AAPM TG-186 report workflow. Acquisition and Validation MethodsA computational patient phantom model was generated from a clinical multi-catheter Ir-192 HDR breast brachytherapy case. Regions of interest (ROIs) were contoured and digitized on the patient CT images and the model was written to a series of DICOM CT images using MATLAB. The model was imported into two commercial treatment planning systems (TPSs) currently incorporating an MBDCA. Identical treatment plans were prepared using a generic Ir-192 HDR source and the TG-43-based algorithm of each TPS. This was followed by dose to medium in medium calculations using the MBDCA option of each TPS. Monte Carlo (MC) simulation was performed in the model using three different codes and information parsed from the treatment plan exported in DICOM radiation therapy (RT) format. Results were found to agree within statistical uncertainty and the dataset with the lowest uncertainty was assigned as the reference MC dose distribution. Data Format and Usage NotesThe dataset is available online at ,. Files include the treatment plan for each TPS in DICOM RT format, reference MC dose data in RT Dose format, as well as a guide for database users and all files necessary to repeat the MC simulations. Potential ApplicationsThe dataset facilitates the commissioning of brachytherapy MBDCAs using TPS embedded tools and establishes a methodology for the development of future clinical test cases. It is also useful to non-MBDCA adopters for intercomparing MBDCAs and exploring their benefits and limitations, as well as to brachytherapy researchers in need of a dosimetric and/or a DICOM RT information parsing benchmark. Limitations include specificity in terms of radionuclide, source model, clinical scenario, and MBDCA version used for its preparation.
|
Mansour, I. R., Valdes-Cortez, C., Ayala Alvarez, D. S., Berumen, F., Côte, J. S., Ndoutoume-Paquet, G., et al. (2025). Reference datasets for commissioning of model-based dose calculation algorithms for electronic brachytherapy. Med. Phys., 52(7), e17872–11pp.
Abstract: PurposeThis work provides the first two clinical test cases for commissioning electronic brachytherapy (eBT) model-based dose calculation algorithms (MBDCAs) for skin irradiation using surface applicators.Acquisition and Validation MethodsThe test cases utilize the INTRABEAM 30 mm surface applicator. Test Case I: water phantom is used to evaluate the algorithm's performance in a uniform medium consisting of a voxelized water cube surrounded by air. Test Case II: Surface eBT represents a heterogeneous medium with four distinct layers: skin tissue, adipose tissue, cortical bone, and soft tissue. Treatment plans for both cases were created and exported into the Radiance treatment planning system (TPS). Dose-to-medium calculations were then performed using this Monte Carlo (MC)-based TPS and compared with MC simulations conducted independently by three different groups using two codes: EGSnrc and PENELOPE. The results agreed within expected Type A and B statistical uncertainties.Data Format and Usage NotesThe dataset is available online at https://doi.org/10.52519/00005. A proprietary file designed for use within Radiance containing CT images and the treatment plan for both test cases, the LINAC modeling, and the CT calibration are included, as well as reference MC and TPS dose data in RTdose format and all files required to run the MC simulations.Potential ApplicationsThis dataset serves as a valuable resource for commissioning eBT MBDCAs and lays the groundwork for developing clinical test cases for other eBT systems. It is also a helpful educational tool for exploring various eBT devices and their advantages and drawbacks. Furthermore, brachytherapy researchers seeking a benchmark for dosimetric calculations in the low-energy domain will find this dataset indispensable.
|
Aliaga, R. J. (2017). Real-Time Estimation of Zero Crossings of Sampled Signals for Timing Using Cubic Spline Interpolation. IEEE Trans. Nucl. Sci., 64(8), 2414–2422.
Abstract: A scheme is proposed for hardware estimation of the location of zero crossings of sampled signals with subsample resolution for timing applications, which consists of interpolating the signal with a cubic spline near the zero crossing and then finding the root of the resulting polynomial. An iterative algorithm based on the bisection method is presented that obtains one bit of the result per step and admits an efficient digital implementation using fixed-point representation. In particular, the root estimation iteration involves only two additions, and the initial values can be obtained from finite impulse response (FIR) filters with certain symmetry properties. It is shown that this allows online real-time estimation of timestamps in free-running sampling detector systems with improved accuracy with respect to the more common linear interpolation. The method is evaluated with simulations using ideal and real timing signals, and estimates are given for the resource usage and speed of its implementation.
|