Home | [1–10] << 11 12 13 14 15 16 >> |
![]() |
Fletcher, E. M., Ballester, F., Beaulieu, L., Morrison, H., Poher, A., Rivard, M. J., et al. (2024). Generation and comparison of 3D dosimetric reference datasets for COMS eye plaque brachytherapy using model-based dose calculations. Med. Phys., 51, 694–706.
Abstract: PurposeA joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs).Acquisition and Validation MethodsFive test cases are developed: (1) a single model 6711 125I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16-mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within & SIM;2.5% and global agreement was & SIM;2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and & SIM;20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5.Data Format and Usage NotesDose distributions for each set of MC and TPS calculations are available online () along with input files and all other information necessary to repeat the calculations.Potential ApplicationsThese data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.
Keywords: Monte Carlo; ocular brachytherapy; treatment planning
|
Piriz, G. H., Gonzalez-Sprinberg, G. A., Ballester, F., & Vijande, J. (2024). Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy. Med. Phys., 51, 5094–5098.
Abstract: BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
Keywords: dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators
|
Valdes-Cortez, C., Mansour, I., Ayala Alvarez, D. S., Berumen, F., Cote, J. S., Ndoutoume-Paquet, G., et al. (2025). Dosimetric impact of physics libraries for electronic brachytherapy Monte Carlo studies. Med. Phys., 52(4), 2520–2532.
Abstract: Background Low-energy x-ray beams used in electronic brachytherapy (eBT) present significant dosimetric challenges due to their high depth-dose gradients, the dependence of detector response on materials, and the lack of standardized dose-to-water references. These challenges have driven the need for Monte Carlo (MC) simulations to ensure accurate dosimetry. However, discrepancies in the physics models used by different MC systems have raised concerns about their dosimetric consistency, particularly in modeling bremsstrahlung interactions. Purpose To assess the dosimetric impact of using different physics approaches in three state-of-the-art MC systems for eBT, focusing on the disagreements observed when different MC methods are used to evaluate bremsstrahlung interactions. Methods The MC studies of the Axxent S700, the Esteya, and the INTRABEAM eBT systems were performed using two EGSnrc applications (egsbrachy and egskerma), TOPAS, and PENELOPE-2018 (PEN18). The fluence spectra and depth doses were compared for simplified x-ray tube models, which maintain the target mode (transmission or reflection), the target material and thickness, and the surface applicators' source-to-surface distance. An extra simulation was made to evaluate the utility of the simplified models as proxies in predicting the most important characteristics of an accurate applicator's simulation (detailed model of INTRABEAM's 30 mm surface applicator). The EGSnrc applications and PEN18 utilized their default bremsstrahlung angular emission approaches. TOPAS used two physics lists: g4em-livermore (TOPAS(liv)) and g4em-penelope (TOPAS(pen)). Results The most significant differences between MC codes were observed for the transmission target mode. The bremsstrahlung component of the fluence spectra differed by about 15% on average, comparing PEN18, EGSnrc applications, and TOPAS(liv), with PEN18's fluences consistently lower. EGSnrc and PEN18 agreed within 3% for their characteristic spectrum components. However, PEN18's characteristic lines overreached TOPAS(liv)'s by 40%. Those spectral characteristics generated depth dose differences, where PEN18, on average, scored 9% lower than EGSnrc and TOPAS(liv). Considering TOPAS(pen) in the transmission mode, PEN18's fluence spectrum presented a lower bremsstrahlung (5%) but a higher characteristic component (10%); these spectral differences compensated, generating depth dose differences within 1% average. In the reflection target mode, EGSnrc and PEN18 agreed within 4% for the bremsstrahlung and characteristic components of the fluence spectra. With TOPAS(pen) in the reflection mode, PEN18 presents 12% lower fluences in the bremsstrahlung component but 6% higher characteristic lines. This spectral behavior diminished the depth dose differences up to 3%. Conclusion This work found considerable disagreements between three state-of-the-art MC systems commonly used in medical applications when simulating bremsstrahlung in eBT. The differences arose when the bremsstrahlung angular distribution and the atomic relaxation processes in the target became relevant. More theoretical and experimental studies are necessary to evaluate the impact of these differences on related calculations.
|
Mansour, I. R., Valdes-Cortez, C., Ayala Alvarez, D. S., Berumen, F., Côte, J. S., Ndoutoume-Paquet, G., et al. (2025). Reference datasets for commissioning of model-based dose calculation algorithms for electronic brachytherapy. Med. Phys., , 11pp.
Abstract: PurposeThis work provides the first two clinical test cases for commissioning electronic brachytherapy (eBT) model-based dose calculation algorithms (MBDCAs) for skin irradiation using surface applicators.Acquisition and Validation MethodsThe test cases utilize the INTRABEAM 30 mm surface applicator. Test Case I: water phantom is used to evaluate the algorithm's performance in a uniform medium consisting of a voxelized water cube surrounded by air. Test Case II: Surface eBT represents a heterogeneous medium with four distinct layers: skin tissue, adipose tissue, cortical bone, and soft tissue. Treatment plans for both cases were created and exported into the Radiance treatment planning system (TPS). Dose-to-medium calculations were then performed using this Monte Carlo (MC)-based TPS and compared with MC simulations conducted independently by three different groups using two codes: EGSnrc and PENELOPE. The results agreed within expected Type A and B statistical uncertainties.Data Format and Usage NotesThe dataset is available online at https://doi.org/10.52519/00005. A proprietary file designed for use within Radiance containing CT images and the treatment plan for both test cases, the LINAC modeling, and the CT calibration are included, as well as reference MC and TPS dose data in RTdose format and all files required to run the MC simulations.Potential ApplicationsThis dataset serves as a valuable resource for commissioning eBT MBDCAs and lays the groundwork for developing clinical test cases for other eBT systems. It is also a helpful educational tool for exploring various eBT devices and their advantages and drawbacks. Furthermore, brachytherapy researchers seeking a benchmark for dosimetric calculations in the low-energy domain will find this dataset indispensable.
|
Garcilazo, H., Valcarce, A., & Vijande, J. (2017). Stable bound states of N's, Lambda's and Xi's. Rev. Mex. Fis., 63(5), 411–422.
Abstract: We review our recent work about the stability of strange few-body systems containing N's, Lambda's, and Xi's. We make use of local central Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nucleon-nucleon system and the latest updates of the hyperon-nucleon and hyperon-hyperon ESCO8c Nijmegen potentials. We solve the three-and four-body bound-state problems by means of Faddeev equations and a generalized Gaussian variational method, respectively. The hypertriton, Lambda np(I)J(P) = (1/2)1/2(+), is bound by 144 keV; the recently discussed Lambda nn (I)J(P) = (1/2)1/2(+) system is unbound, as well as the Lambda Lambda nn (I)J(P) = (1)0(+) system, being just above threshold. Our results indicate that the Xi NN, Xi Xi N and Xi Xi NN systems with maximal isospin might be bound.
|