toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E. url  doi
openurl 
  Title A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 766 Issue Pages 170-176  
  Keywords pp interactions at LHC; Heavy-ion collisions at RHIC and LHC; Ridge phenomenon; Correlated clusters; Two-particle azimuthal and rapidity correlations  
  Abstract A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.  
  Address [Sanchis-Lozano, Miguel-Angel] Ctr Mixto Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396438300025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3002  
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K. url  doi
openurl 
  Title Searching for new physics with three-particle correlations in pp collisions at the LHC Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 781 Issue Pages 505-509  
  Keywords pp interactions at LHC; Models beyond the Standard Model; Multiparticle azimuthal and rapidity correlations; Hidden Valley models; Correlated clusters  
  Abstract New phenomena involving pseudorapidity and azimuthal correlations among final-state particles in pp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques.  
  Address [Sanchis-Lozano, Miguel-Angel] CERN, Dept Theoret Phys, CH-1211 Geneva 23, Switzerland, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435653100065 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3634  
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Ding, M.H.; Gao, F.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Distribution amplitudes of heavy-light mesons Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 257-262  
  Keywords B-meson decays; Heavy-light mesons; Nonperturbative continuum methods in quantum field theory; Parton distribution amplitudes; Quantum chromodynamics  
  Abstract A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the B-meson distribution is particularly important in treatments of exclusive B-decays using effective field theory and the factorisation formalism; and its value is therefore computed: lambda(B) = (zeta = 2GeV) = 0.54(3) GeV. As an example and in anticipation of precision measurements at new-generation B-factories, the branching fraction for the rare B -> gamma (E-gamma)l nu(l) radiative decay is also calculated, retaining 1/m(B)(2), and 1/E-gamma(2) corrections to the differential decay width, with the result Gamma(B -> gamma l nu l) /Gamma(B) = 0.47 (15) on E-gamma > 1.5 GeV.  
  Address [Binosi, Daniele; Ding, Minghui] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3934  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Study of the hard double-parton scattering contribution to inclusive four-lepton production in pp collisions at root s=8 TeV with the ATLAS detector Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 595-614  
  Keywords Four-lepton production; Double Drell-Yan; Double parton-scattering; Higgs golden decay channel  
  Abstract The inclusive production of four isolated charged leptons in pp collisions is analysed for the presence of hard double-parton scattering, using 20.2 fb(-1) of data recorded in the ATLAS detector at the LHC at centre-of-mass energy root s = 8 TeV. In the four-lepton invariant-mass range of 80 < m(4l) < 1000 GeV, an artificial neural network is used to enhance the separation between single- and double-parton scattering based on the kinematics of the four leptons in the final state. An upper limit on the fraction of events originating from double-parton scattering is determined at 95% confidence level to be f(DPS) = 0.042, which results in an estimated lower limit on the effective cross section at 95% confidence level of 1.0 mb.  
  Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200077 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3937  
Permanent link to this record
 

 
Author Rodriguez-Alvarez, M.J.; Sanchez, F.; Soriano, A.; Iborra, A.; Mora, C. doi  openurl
  Title Exploiting symmetries for weight matrix design in CT imaging Type Journal Article
  Year 2011 Publication Mathematical and Computer Modelling Abbreviated Journal Math. Comput. Model.  
  Volume 54 Issue 7-8 Pages 1655-1664  
  Keywords Computerized tomography imaging; Polar grid; System matrix; Rotation symmetries; ART  
  Abstract In this paper we propose several methods of constructing the system matrix (SM) of a Computed Tomography (CT) scanner with two objectives: (1) to construct SMs in the shortest possible time and store them in an ordinary PC without losing quality, (2) to analyze the possible applications of the proposed method to 3D, taking into account SMs' sizes, computing time and reconstructed image quality. In order to build the SM, we propose two new field of view (FOV) pixellation schemes, based on a polar coordinate system (polar grid) by taking advantage of the polar rotation symmetries of CT devices. Comparisons between the SMs proposed are performed using two phantom and a real CT-simulator images. Global error, contrast, noise and homogeneity of the reconstructed images are discussed.  
  Address [Rodriguez-Alvarez, MJ; Iborra, A; Mora, C] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain, Email: mjrodri@imm.upv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0895-7177 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293269200007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 708  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Model-independent search for neutrino sources with the ANTARES neutrino telescope Type Journal Article
  Year 2020 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 114 Issue Pages 35-47  
  Keywords Neutrino astronomy; Astroparticle physics; Pattern recognition; Anisotropy  
  Abstract A novel method to analyse the spatial distribution of neutrino candidates recorded with the ANTARES neutrino telescope is introduced, searching for an excess of neutrinos in a region of arbitrary size and shape from any direction in the sky. Techniques originating from the domains of machine learning, pattern recognition and image processing are used to purify the sample of neutrino candidates and for the analysis of the obtained skymap. In contrast to a dedicated search for a specific neutrino emission model, this approach is sensitive to a wide range of possible morphologies of potential sources of high-energy neutrino emission. The application of these methods to ANTARES data yields a large-scale excess with a post-trial significance of 2.5 sigma. Applied to public data from IceCube in its IC40 configuration, an excess consistent with the results from ANTARES is observed with a post-trial significance of 2.1 sigma.  
  Address [Albert, A.; Drouhin, D.; Racca, C.; Saldana, M.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit,BP Colmar 50568, F-68008 Mulhouse, France, Email: stefan.geisselsoeder@fau.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489353300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4167  
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
  Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 46 Issue 4 Pages 045001 - 155pp  
  Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics  
  Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.  
  Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460153900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3930  
Permanent link to this record
 

 
Author Beacham, J. et al; Martinez-Vidal, F. url  doi
openurl 
  Title Physics beyond colliders at CERN: beyond the Standard Model working group report Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 1 Pages 010501 - 114pp  
  Keywords beyond standard Model; dark matter; dark sector; axions; particle physics; accelerators  
  Abstract The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.  
  Address [Beacham, J.] Duke Univ, Durham, NC 27708 USA, Email: Gaia.Lanfranchi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521343200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4341  
Permanent link to this record
 

 
Author Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A. url  doi
openurl 
  Title Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 9 Pages 090501 - 226pp  
  Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments  
  Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.  
  Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570614200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4535  
Permanent link to this record
 

 
Author PANDA Collaboration (Davi, F. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the endcap disc DIRC Type Journal Article
  Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 49 Issue 12 Pages 120501 - 128pp  
  Keywords technical design report; particle identification; Cherenkov detector; PANDA  
  Abstract PANDA (anti-proton annihiliation at Darmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2 x 10(32) cm(-2) s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5 degrees to 22 degrees and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA disc DIRC detector that has not been used in any other high energy physics experiment before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees sufficient safety margins.  
  Address [Davi, F.] Univ Politecn Marche Ancona, Ancona, Italy, Email: muschmidt@uni-wuppertal.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000928188400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5476  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva