|   | 
Details
   web
Records
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title Trigger and aperture of the surface detector array of the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 613 Issue 1 Pages 29-39
Keywords Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; Exposure
Abstract The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.
Address [Boncioli, D.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy, Email: giorgio.matthiae@roma2.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000274772800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 499
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A method for detection of muon induced electromagnetic showers with the ANTARES detector Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 56-62
Keywords Neutrino telescope; Electromagnetic shower identification; High energy muons; Energy reconstruction
Abstract The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.
Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Rostovtsev, A.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: manganos@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 988
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F.
Title Gamma/hadron separation with the HAWC observatory Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1039 Issue Pages 166984 - 13pp
Keywords High energy; Crab Nebula; G/H separation; Machine Learning
Abstract The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority (> 99.9%) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.
Address [Alfaro, R.; Angeles Camacho, J. R.; Avila Rojas, D.; Belmont-Moreno, E.; Espinoza, C.; Garcia, D.; Hernandez, S.; Leon Vargas, H.; Sandoval, A.; Serna-Franco, J.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico, Email: tcapistran@astro.unam.mx;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000861747900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5371
Permanent link to this record
 

 
Author An, L.; Auffray, E.; Betti, F.; Dall'Omo, F.; Gascon, D.; Golutvin, A.; Guz, Y.; Kholodenko, S.; Martinazzoli, L.; Mazorra de Cos, J.; Picatoste, E.; Pizzichemi, M.; Roloff, P.; Salomoni, M.; Sanchez, D.; Schopper, A.; Semennikov, A.; Shatalov, P.; Shmanin, E.; Strekalina, D.; Zhang, Y.
Title Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1045 Issue Pages 167629 - 7pp
Keywords Calorimetry; High energy physics (HEP); Particle detectors; Spaghetti calorimeter (SPACAL); Fibres; Scintillating crystals
Abstract A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) and Y3Al5O12 (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution root was studied as a function of the incidence angle of the beam and found to be of the order of 10%/ E a 1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 +/- 0.2) ps at 5 GeV.
Address [An, L.; Auffray, E.; Betti, F.; Dall'Omo, F.; Martinazzoli, L.; Pizzichemi, M.; Roloff, P.; Salomoni, M.; Schopper, A.] European Org Nucl Res CERN, Geneva, Switzerland, Email: loris.martinazzoli@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000882335600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5413
Permanent link to this record
 

 
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F.
Title The High-Altitude Water Cherenkov (HAWC) observatory in Mexico: The primary detector Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1052 Issue Pages 168253 - 18pp
Keywords Physics – instrumentation and detectors; Water Cherenkov Detectors; Astrophysics; High energy physics – experiment; Nuclear experiment
Abstract The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in Mexico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.
Address [Abeysekara, A. U.; Barber, A. S.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA, Email: eduardo.delafuentea@academicos.udg.mx
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001063137300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5674
Permanent link to this record
 

 
Author Perez-Calatayud, J.; Ballester, F.; Tedgren, C.; DeWerd, L.A.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Vijande, J.
Title GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level Type Journal Article
Year 2022 Publication Radiotherapy and Oncology Abbreviated Journal Radiother. Oncol.
Volume 176 Issue Pages 108-117
Keywords Brachytherapy; High energy; Calibration; Dosimetry; HDR-PDR
Abstract The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high-or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommen-dations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source cal-ibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments.
Address [Perez-Calatayud, Jose] La Fe Hosp, Radiotherapy Dept, Valencia, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Elsevier Ireland Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0167-8140 ISBN Medium
Area Expedition Conference
Notes WOS:000880438000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5466
Permanent link to this record
 

 
Author Bouhova-Thacker, E.; Kostyukhin, V.; Koffas, T.; Liebig, W.; Limper, M.; Piacquadio, G.N.; Prokofiev, K.; Weiser, C.; Wildauer, A.
Title Expected Performance of Vertex Reconstruction in the ATLAS Experiment at the LHC Type Journal Article
Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 57 Issue 2 Pages 760-767
Keywords Data analysis; data reconstruction; high energy physics; pattern recognition; reconstruction algorithms; tracking; vertex detectors
Abstract In the harsh environment of the Large Hadron Collider at CERN (design luminosity of 10(34) cm(-2) s(-1)) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper is the expected performance of the vertex reconstruction used in the ATLAS experiment. The algorithms for the reconstruction of primary and secondary vertices as well as for finding photon conversions and vertex reconstruction in jets are described. The implementation of vertex algorithms which follows a very modular design based on object-oriented C++ is presented. A user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.
Address [Bouhova-Thacker, Eva] Univ Lancaster, Lancaster LA1 4YB, England, Email: bouhova@mail.cern.ch
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000276679200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 260
Permanent link to this record
 

 
Author Miñano, M.
Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue 3 Pages 1135-1140
Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC
Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.
Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000291659300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 651
Permanent link to this record
 

 
Author Carrio, F.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Marin, C.; Moreno, P.; Sanchis, E.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Optical Link Card Design for the Phase II Upgrade of TileCal Experiment Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue 4 Pages 1657-1663
Keywords High energy physics instrumentation computing; optical-fiber communication high-speed electronics; programmable logic devices
Abstract This paper presents the design of an optical link card developed in the frame of the R&D activities for the phase 2 upgrade of the TileCal experiment. This board, that is part of the evaluation of different technologies for the final choice in the next years, is designed as a mezzanine that can work independently or be plugged in the optical multiplexer board of the TileCal backend electronics. It includes two SNAP 12 optical connectors able to transmit and receive up to 75 Gb/s and one SFP optical connector for lower speeds and compatibility with existing hardware as the read out driver. All processing is done in a Stratix II GX field-programmable gate array (FPGA). Details are given on the hardware design, including signal and power integrity analysis, needed when working with these high data rates and on firmware development to obtain the best performance of the FPGA signal transceivers and for the use of the GBT protocol.
Address [Carrio, F; Gonzalez, V; Marin, C; Sanchis, E] Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain, Email: vicente.gonzalez@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000293975700037 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 722
Permanent link to this record
 

 
Author Carrio, F.
Title The Data Acquisition System for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator Type Journal Article
Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 69 Issue 4 Pages 687-695
Keywords Large Hadron Collider; Data acquisition; Field programmable gate arrays; Clocks; Detectors; Computer architecture; Microprocessors; ATLAS tile calorimeter (TileCal); data acquisition (DAQ) systems; field-programmable gate array (FPGA); high energy physics; high-speed electronics
Abstract The tile calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the large hadron collider (LHC). In 2025, the LHC will be upgraded leading to the high luminosity LHC (HL-LHC). The HL-LHC will deliver an instantaneous luminosity up to seven times larger than the LHC nominal luminosity. The ATLAS Phase-II upgrade (2025-2027) will accommodate the subdetectors to the HL-LHC requirements. As part of this upgrade, the majority of the TileCal on-detector and off-detector electronics will be replaced using a new readout strategy, where the on-detector electronics will digitize and transmit digitized detector data to the off-detector electronics at the bunch crossing frequency (40 MHz). In the counting rooms, the off-detector electronics will compute reconstructed trigger objects for the first-level trigger and will store the digitized samples in pipelined buffers until the reception of a trigger acceptance signal. The off-detector electronics will also distribute the LHC clock to the on-detector electronics embedded within the digital data stream. The TileCal Phase-II upgrade project has undertaken an extensive research and development program that includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture envisaged for the HL-LHC. The Demonstrator module equipped with the latest version of the on-detector electronics was built and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition (TDAQ), and the timing, trigger, and command (TTC) systems. This article describes in detail the main hardware and firmware components of the clock distribution and data acquisition systems for the Demonstrator module, focusing on the TilePPr Demonstrator.
Address [Carrio, F.] Inst Fis Corpuscular CSIC UV, Paterna 46980, Spain, Email: fernando.carrio@cern.ch
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000803113800016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5244
Permanent link to this record