toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 740 Issue Pages 73-79  
  Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology  
  Abstract We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347046200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2099  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M. url  doi
openurl 
  Title Cosmological radiation density with non-standard neutrino-electron interactions Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue Pages 136508 - 9pp  
  Keywords Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations  
  Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.  
  Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000713101800031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5023  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Born-Infeld inspired modifications of gravity Type Journal Article
  Year 2018 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 727 Issue Pages 1-129  
  Keywords Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities  
  Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.  
  Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000425482900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3497  
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.Q.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. url  doi
openurl 
  Title In the realm of the Hubble tension – a review of solutions Type Journal Article
  Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 38 Issue 15 Pages 153001 - 110pp  
  Keywords cosmological parameters; cosmology; dark energy; Hubble constant  
  Abstract The simplest ΛCDM model provides a good fit to a large span of cosmological data but harbors large areas of phenomenology and ignorance. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the 4 sigma to 6 sigma disagreement between predictions of the Hubble constant, H (0), made by the early time probes in concert with the 'vanilla' ΛCDM cosmological model, and a number of late time, model-independent determinations of H (0) from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demands a hypothesis with enough rigor to explain multiple observations-whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. A thorough review of the problem including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions is presented here. We include more than 1000 references, indicating that the interest in this area has grown considerably just during the last few years. We classify the many proposals to resolve the tension in these categories: early dark energy, late dark energy, dark energy models with 6 degrees of freedom and their extensions, models with extra relativistic degrees of freedom, models with extra interactions, unified cosmologies, modified gravity, inflationary models, modified recombination history, physics of the critical phenomena, and alternative proposals. Some are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within 1-2 sigma between Planck 2018, using the cosmic microwave background power spectra data, baryon acoustic oscillations, Pantheon SN data, and R20, the latest SH0ES Team Riess, et al (2021 Astrophys. J. 908 L6) measurement of the Hubble constant (H (0) = 73.2 +/- 1.3 km s(-1) Mpc(-1) at 68% confidence level). However, there are many more unsuccessful models which leave the discrepancy well above the 3 sigma disagreement level. In many cases, reduced tension comes not simply from a change in the value of H (0) but also due to an increase in its uncertainty due to degeneracy with additional physics, complicating the picture and pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.  
  Address [Di Valentino, Eleonora] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000672148200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4931  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology Type Journal Article
  Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 38 Issue 25 Pages 2350124 - 32pp  
  Keywords Framed standard model; phase transition; early Universe; cosmology  
  Abstract The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001099552500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5803  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F. et al; Villanueva-Domingo, P. url  doi
openurl 
  Title The CAMELS Project: Public Data Release Type Journal Article
  Year 2023 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.  
  Volume 265 Issue 2 Pages 54 - 14pp  
  Keywords Cosmology; Hydrodynamical simulations; Astrostatistics; Galaxy formation  
  Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lya spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at .  
  Address [Villaescusa-Navarro, Francisco; Genel, Shy; Angles-Alcazar, Daniel; Hassan, Sultan; Pisani, Alice; Wong, Kaze W. K.; Coulton, William R.; Steinwandel, Ulrich P.; Spergel, David N.; Burkhart, Blakesley; Wandelt, Benjamin; Somerville, Rachel S.; Bryan, Greg L.; Li, Yin] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA, Email: camel.simulations@gmail.com  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0067-0049 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000964876300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5525  
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Jimenez, R.; Pena-Garay, C.; Gomez, C. url  doi
openurl 
  Title Cancelling out systematic uncertainties Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 419 Issue 2 Pages 1040-1050  
  Keywords methods: statistical; cosmology: theory  
  Abstract We present a method to minimize, or even cancel out, the nuisance parameters affecting a measurement. Our approach is general and can be applied to any experiment or observation where systematic errors are a concern e.g. are larger than statistical errors. We compare it with the Bayesian technique used to deal with nuisance parameters: marginalization, and show how the method compares and improves by avoiding biases. We illustrate the method with several examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations (BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations and dark matter detection. By applying the method we not only recover some known results but also find some interesting new ones. For BAO experiments we show how to combine radial and angular BAO measurements in order to completely eliminate the dependence on the sound horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how the uncertainty in the luminosity distance by a second parameter modelled as a metallicity dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the expansion rate of the universe, we demonstrate how a particular combination of observables nearly removes the metallicity dependence of the galaxy on determining differential ages, thus removing the agemetallicity degeneracy in stellar populations. We hope that these findings will be useful in future surveys to obtain robust constraints on the dark energy equation of state.  
  Address [Norena, Jorge; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICREA, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298482300011 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 890  
Permanent link to this record
 

 
Author Anderson, L. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 427 Issue 4 Pages 3435-3467  
  Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe  
  Abstract We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda CDM cosmological model, this sample covers an effective volume of 2.2 Gpc(3), and represents the largest sample of the Universe ever surveyed at this density, (n) over bar approximate to 3 x 10(-4) h(-3) Mpc(3). We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5 sigma in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7 sigma. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon D-V/r(s) = 13.67 +/ 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance D-V (z = 0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.  
  Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: nikhil.padmanabhan@yale.edu;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314421000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1319  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Vogelsberger, M.; Viel, M.; Loeb, A. url  doi
openurl 
  Title Neutrino signatures on the high-transmission regions of the Lyman alpha forest Type Journal Article
  Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 431 Issue 4 Pages 3670-3677  
  Keywords neutrinos; intergalactic medium; quasars: absorption lines; cosmology: theory; large-scale structure of Universe  
  Abstract We quantify the impact of massive neutrinos on the statistics of low-density regions in the intergalactic medium as probed by the Lyman alpha forest at redshifts z = 2.2-4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman alpha absorption features, as sampled by Lyman alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalogue of 200 high-resolution (signal-to-noise ratio similar to 100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high-transitivity regions of the Lyman alpha forest. The constraints obtained with this method can be combined with independent bounds from the cosmic microwave background, large-scale structures and measurements of the matter power spectrum from the Lyman alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.  
  Address Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: viel@oats.inaf.it  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319479000057 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1458  
Permanent link to this record
 

 
Author Vincent, A.C.; Scott, P.; Trampedach, R. url  doi
openurl 
  Title Light bosons in the photosphere and the solar abundance problem Type Journal Article
  Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 432 Issue 4 Pages 3332-3339  
  Keywords elementary particles; line: formation; Sun: abundances; Sun: atmosphere; cosmology: theory  
  Abstract Spectroscopy is used to measure the elemental abundances in the outer layers of the Sun, whereas helioseismology probes the interior. It is well known that current spectroscopic determinations of the chemical composition are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line formation occurs. Although non-resonant conversion in the line-forming regions can in principle impact derived abundances, constraints from axion-photon conversion experiments rule out the couplings necessary for these effects to be detectable. We show that this extends to hidden photons and chameleons (which would exhibit similar phenomenological behaviour), ruling out known theories of new light bosons as photospheric solutions to the solar abundance problem.  
  Address [Vincent, A. C.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: vincent@ific.uv.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321053500058 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva