Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Pedraza, L. K., et al. (2024). A rapid method for prediction of the non-resonant ultra-fast multipactor regime in high gradient RF accelerating structures. Results Phys., 64, 107921–9pp.
Abstract: The purpose of this work is to present an analytical method that allows to estimate in an approximate and fast way the presence of the non-resonant and ultra-fast multipactor effect in RF accelerating structures in the presence of high gradient electromagnetic fields. This single-surface multipactor regime, which has been little studied in the scientific literature, is characterised by appearing only under conditions of very strong RF electric fields (of the order of tens or hundreds of MV/m), where it is predominant over other types of single- or dual-surface resonance described in classical multipactor theory. This type of multipactor causes a rapid growth of the electron population and poses a serious drawback in the operation of RF accelerator components operating under high gradient conditions. Specifically, in dielectric-assist accelerating structures (DAA) it has been experimentally found that the presence of multipactor limits the maximum operating gradient of these components due to a significant increase in the reflected power due to the discharge, being this phenomenon the main problem to overcome. In a previous work, we found and described in detail by means of numerical simulations the presence of this non-resonant and ultra-fast multipactor regime in a DAA structure design for hadrontherapy. Here we aim to present a simple and fast method to predict the presence of this non-resonant and ultra-fast multipactor regime in RF accelerator structures with cylindrical revolution symmetry around the acceleration axis. This method is especially useful in the design stages of accelerating structures as it provides much faster results than numerical simulations of the multipactor, with quite good accuracy in a wide range of cases as shown in this paper.
|
DEPFET collaboration(Alonso, O. et al), Boronat, M., Esperante-Pereira, D., Fuster, J., Garcia, I. G., Lacasta, C., et al. (2013). DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider. IEEE Trans. Nucl. Sci., 60(2), 1457–1465.
Abstract: The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
|
Boronat, M., Marinas, C., Frey, A., Garcia, I., Schwenker, B., Vos, M., et al. (2015). Physical Limitations to the Spatial Resolution of Solid-State Detectors. IEEE Trans. Nucl. Sci., 62(1), 381–386.
Abstract: In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
|
Gonzalez-Iglesias, D., Esperante, D., Gimeno, B., Boronat, M., Blanch, C., Fuster-Martinez, N., et al. (2021). Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures. IEEE Trans. Nucl. Sci., 68(2), 78–91.
Abstract: The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.
|
Martin-Luna, P., Gimeno, B., Gonzalez-Iglesias, D., Boronat, M., Fuster-Martinez, N., Martinez-Reviriego, P., et al. (2024). On the magnetostatic scalar potential and magnetic field of a cylindrical magnet. Eur. J. Phys., 45(6), 065203–15pp.
Abstract: The magnetostatic potential and magnetic field of a solid and hollow cylindrical magnet is calculated everywhere in space in terms of complete elliptic integrals. These expressions are calculated using an electromagnetic analogy with the electrostatic potential and electric field of two uniformly charged disks with opposite surface density. The analogy is employed to study intuitively the discontinuities and the dipolar approximation of the fields (H) over right arrow and (B) over right arrow. The range of validity of the dipolar approximation has been studied along the cylinder axis and in the midplane perpendicular to the cylinder axis, comparing them with the obtained general expression.
|
Belle-II DEPFET and PXD Collaboration(Ye, H. et al), Boronat, M., Esperante, D., Fuster, J., Gomis, P., Lacasta, C., et al. (2021). Commissioning and performance of the Belle II pixel detector. Nucl. Instrum. Methods Phys. Res. A, 987, 164875–5pp.
Abstract: The Belle II experiment at the SuperKEKB energy-asymmetric e(+)e(-) collider has completed a series of substantial upgrades and started collecting data in 2019. The experiment is expected to accumulate a data set of 50 ab(-1) to explore new physics beyond the Standard Model at the intensity frontier. The pixel detector (PXD) of Belle II plays a key role in vertex determination. It has been developed using the DEpleted P-channel Field Effect Transistor (DEPFET) technology, which combines low power consumption in the active pixel area and low intrinsic noise with a very small material budget. In this paper, commissioning and performance of the PXD measured with first collision data are presented.
|
Gonzalez-Iglesias, D., Aksoy, A., Esperante, D., Gimeno, B., Latina, A., Boronat, M., et al. (2021). X-band RF photoinjector design for the CompactLight project. Nucl. Instrum. Methods Phys. Res. A, 1014, 165709–10pp.
Abstract: RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.
|
Boronat, M., Fuster, J., Garcia, I., Ros, E., & Vos, M. (2015). A robust jet reconstruction algorithm for high-energy lepton colliders. Phys. Lett. B, 750, 95–99.
Abstract: We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of t (t) over tilde and ZZ production at future linear e(+)e(-) colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e(+)e(-) colliders.
|
Boronat, M., Fullana, E., Fuster, J., Gomis, P., Hoang, A. H., Widl, A., et al. (2020). Top quark mass measurement in radiative events at electron-positron colliders. Phys. Lett. B, 804, 135353–9pp.
Abstract: In this letter, we evaluate the potential of linear e(+)e(-) colliders to measure the top quark mass in radiative events and in a suitable short-distance scheme. We present a calculation of the differential cross section for production of a top quark pair in association with an energetic photon from initial state radiation, as a function of the invariant mass of the t (t) over bar. This matchedcalculation includes the QCD enhancement of the cross section around the t (t) over bar production threshold and remains valid in the continuum well above the threshold. The uncertainty in the top mass determination is evaluated in realistic operating scenarios for the Compact Linear Collider (CLIC) and the International Linear Collider (ILC), including the statistical uncertainty and the theoretical and experimental systematic uncertainties. With this method, the top quark mass can be determined with a precision of 110 MeV in the initial stage of CLIC, with 1 ab(-1) at root s = 380 GeV, and with a precision of approximately 150 MeV at the ILC, with L = 4 ab(-1) at root s = 500GeV. Radiative events allow measurements of the top quark mass at different renormalization scales, and we demonstrate that such a measurement can yield a statistically significant test of the evolution of the MSR mass m(t)(MSR)(R) for scales R < m(t).
|
CLICdp Collaboration(Abramowicz, H. et al.), Boronat, M., Fullana, E., Fuster, J., Garcia, I., Gomis Lopez, P., et al. (2019). Top-quark physics at the CLIC electron-positron linear collider. J. High Energy Phys., 11(11), 003–88pp.
Abstract: The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies root s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of ttH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.
|