toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hirsch, M.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Can one ever prove that neutrinos are Dirac particles? Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 781 Issue Pages 302-305  
  Keywords  
  Abstract According to the “Black Box” theorem the experimental confirmation of neutrinoless double beta decay (0 nu 2 beta) would imply that at least one of the neutrinos is a Majorana particle. However, a null 0 nu 2 beta signal cannot decide the nature of neutrinos, as it can be suppressed even for Majorana neutrinos. In this letter we argue that if the null 0 nu 2 beta decay signal is accompanied by a 0 nu 2 beta quadruple beta decay signal, then at least one neutrino should be a Dirac particle. This argument holds irrespective of the underlying processes leading to such decays.  
  Address [Hirsch, Martin; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435653100039 Approved no  
  Is ISI yes International Collaboration (down) no  
  Call Number IFIC @ pastor @ Serial 3632  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Seesaw Dirac neutrino mass through dimension-six operators Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 3 Pages 035009 - 18pp  
  Keywords  
  Abstract In this paper, a follow-up of [S. C. Chulia, R. Srivastava, and J. W. F. Valle, Phys. Lett. B 781, 122 (2018)], we describe the many pathways to generate Dirac neutrino mass through dimension-six operators. By using only the standard model Higgs doublet in the external legs, one gets a unique operator 1/Lambda(2) (L) over bar (Phi) over bar (Phi) over bar Phi nu(R). In contrast, the presence of new scalars implies new possible field contractions, which greatly increase the number of possibilities. Here, we study in detail the simplest ones, involving SU(2)(L) singlets, doublets, and triplets. The extra symmetries needed to ensure the Dirac nature of neutrinos can also be responsible for stabilizing dark matter.  
  Address [Chulia, Salvador Centelles; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000441013200003 Approved no  
  Is ISI yes International Collaboration (down) no  
  Call Number IFIC @ pastor @ Serial 3686  
Permanent link to this record
 

 
Author Reig, M.; Srivastava, R. url  doi
openurl 
  Title Spontaneous proton decay and the origin of Peccei-Quinn symmetry Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 134-139  
  Keywords  
  Abstract We propose a new interpretation of Peccei-Quinn symmetry within the Standard Model, identifying it with the axial B+L symmetry i.e. U (1)(PQ) equivalent to U (1)(gamma 5)(B+L). This new interpretation retains all the attractive features of Peccei-Quinn solution to strong CP problem but in addition also leads to several other new and interesting consequences. Owing to the identification U (1)(PQ) equivalent to U (1)(gamma 5)(B+L) the axion also behaves like Majoron inducing small seesaw masses for neutrinos after spontaneous symmetry breaking. Another novel feature of this identification is the phenomenon of spontaneous (and also chiral) proton decay with its decay rate associated with the axion decay constant. Low energy processes which can be used to test this interpretation are pointed out.  
  Address [Reig, Mario; Srivastava, Rahul] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200014 Approved no  
  Is ISI yes International Collaboration (down) no  
  Call Number IFIC @ pastor @ Serial 3933  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva