toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrinos, DUNE and the world best bound on CPT invariance Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 780 Issue Pages 631-637  
  Keywords Neutrino mass and mixing; Neutrino oscillation; CPT  
  Abstract CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3 sigma. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Delta(Delta m(31)(2)) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.  
  Address [Barenboim, G.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432187800085 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3620  
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Bernabeu, J.; Etxebeste, A.; Lacasta, C.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F. doi  openurl
  Title Study and comparison of different sensitivity models for a two-plane Compton camera Type Journal Article
  Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 63 Issue 13 Pages 135004 - 19pp  
  Keywords Compton camera imaging; MLEM; Monte Carlo simulations; image quality  
  Abstract Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with Na-22 sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.  
  Address [Munoz, Enrique; Barrio, John; Bernabeu, Jose; Etxebeste, Ane; Lacasta, Carlos; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436390800004 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3639  
Permanent link to this record
 

 
Author Vento, V. doi  openurl
  Title Skyrmions at high density Type Journal Article
  Year 2018 Publication Physics of Particles and Nuclei Letters Abbreviated Journal Phys. Part. Nuclei Lett.  
  Volume 15 Issue 4 Pages 367-370  
  Keywords quark; pion; skyrmion; dilation  
  Abstract The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.  
  Address [Vento, V.] Univ Valencia, CSIC, Dept Fis Teor IFIC, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher Pleiades Publishing Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1547-4771 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000437770100006 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3651  
Permanent link to this record
 

 
Author Alcaide, J.; Salvado, J.; Santamaria, A. url  doi
openurl 
  Title Fitting flavour symmetries: the case of two-zero neutrino mass textures Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 164 - 18pp  
  Keywords Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We present a numeric method for the analysis of the fermion mass matrices predicted in flavour models. The method does not require any previous algebraic work, it offers a chi(2) comparison test and an easy estimate of confidence intervals. It can also be used to study the stability of the results when the predictions are disturbed by small perturbations. We have applied the method to the case of two-zero neutrino mass textures using the latest available fits on neutrino oscillations, derived the available parameter space for each texture and compared them. Textures A(1) and A(2) seem favoured because they give a small chi(2), allow for large regions in parameter space and give neutrino masses compatible with Cosmology limits. The other “allowed” textures remain allowed although with a very constrained parameter space, which, in some cases, could be in conflict with Cosmology. We have also revisited the “forbidden” textures and studied the stability of the results when the texture zeroes are not exact. Most of the forbidden textures remain forbidden, but textures F-1 and F-3 are particularly sensitive to small perturbations and could become allowed.  
  Address [Alcaide, Julien; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Valencia, Spain, Email: julien.alcaide@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000440091700010 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3680  
Permanent link to this record
 

 
Author Aliaga, R.J.; Guirao, A.J. url  doi
openurl 
  Title On the preserved extremal structure of Lipschitz-free spaces Type Journal Article
  Year 2019 Publication Studia Mathematica Abbreviated Journal Studia Math.  
  Volume 245 Issue 1 Pages 1-14  
  Keywords concave space; extremal structure; Lipschitz-free space; Lipschitz function; metric alignment; preserved extreme point  
  Abstract We characterize preserved extreme points of the unit ball of Lipschitz-free spaces F (X) in terms of simple geometric conditions on the underlying metric space (X, d). Namely, the preserved extreme points are the elementary molecules corresponding to pairs of points p, q in X such that the triangle inequality d (p, q) <= d (p, r) + d (q, r) is uniformly strict for r away from p, q. For compact X, this condition reduces to the triangle inequality being strict. As a consequence, we give an affirmative answer to a conjecture of N. Weaver that compact spaces are concave if and only if they have no triple of metrically aligned points, and we show that all extreme points are preserved for several classes of compact metric spaces X, including Holder and countable compacta.  
  Address [Aliaga, Ramon J.; Guirao, Antonio J.] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, E-46022 Valencia, Spain, Email: raalva@upvnet.upv.es;  
  Corporate Author Thesis  
  Publisher Polish Acad Sciences Inst Mathematics-Impan Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3223 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446980500001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3753  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 063 - 26pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.  
  Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000449817300002 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3801  
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A. doi  openurl
  Title Densitometric Radiographic Imaging With Contour Sensors Type Journal Article
  Year 2019 Publication IEEE Access Abbreviated Journal IEEE Access  
  Volume 7 Issue Pages 18902-18914  
  Keywords Conventional X-ray imaging; contour data; densitometric images; dynamic range; depth information  
  Abstract We present the technical/physical foundations of a new imaging technique that combines ordinary radiographic information (generated by conventional X-ray settings) with the patient's volume to derive densitometric images. Traditionally, these images provide quantitative information about tissues densities. In our approach, they graphically enhance either soft or bony regions. After measuring the patient's volume with contour recognition devices, the physical traversed lengths within it (as the Roentgen beam intersects the patient) are calculated and pixel-wise associated with the original radiograph (X). In order to derive this map of lengths (L), the camera equations of the X-ray system and the contour sensor are determined. The patient's surface is also translated to the point-of-view of the X-ray beam and all its entrance/exit points are sought with the help of ray-casting methods. The derived L is applied to X as a physical operation (subtraction), obtaining soft tissue-(D-S) or bone-enhanced (D'(B)) figures. In the D-S type, the contained graphical information can be linearly mapped to the average electronic density (traversed by the X-ray beam). This feature represents an interesting proof-of-concept of associating density data to radiographs, but most important, their intensity histogram is objectively compressed, i.e., the dynamic range is more shrunk (compared against the corresponding X). This leads to other advantages: improvement in the visibility of border/edge areas (high gradient), extended manual window level/width manipulations during screening, and immediate correction of underexposed X instances. In the D-B' type, high-density elements are highlighted and easier to discern. All these results can be achieved with low-energy beam exposures, saving costs and dose. Future work will deepen this clinical side of our research. In contrast with other image-based modifiers, the proposed method is grounded on the measurement of a physical entity: the span of the X-ray beam within a body while undertaking a radiographic examination.  
  Address [Albiol, Francisco; Corbi, Alberto] CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: kiko@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459591800001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3920  
Permanent link to this record
 

 
Author Llosa, G. doi  openurl
  Title SiPM-based Compton cameras Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 926 Issue Pages 148-152  
  Keywords Compton camera; Silicon photomultiplier (SiPM)  
  Abstract Compton cameras have been developed for almost fifty years in various fields (astronomy, medical imaging, safety and industrial inspections, etc.), employing different types of detectors. Their potential use has gained renewed interest with the emergence of high light yield scintillator crystals and silicon photomultipliers (SiPMs). This combination provides good performance and operation simplicity at an affordable cost, raising again the interest in this type of systems. SiPM-based Compton cameras are being assessed for diverse applications with promising results.  
  Address [Llosa, G.] UVEG, CSIC, Inst Fis Corpuscular IFIC, C Catedrat Beltran 2, E-46980 Valencia, Spain, Email: llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461775500011 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3951  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, R. url  doi
openurl 
  Title A plausible explanation of Upsilon(10860) Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 791 Issue Pages 409-413  
  Keywords Quark; Meson; Potential  
  Abstract We show that a good description of the Upsilon(10860) properties, in particular the mass, the e(+) e(-) leptonic widths and the pi(+) pi(-) Upsilon(ns) (n = 1, 2, 3) production rates, can be obtained under the assumption that Upsilon(10860) is a mixing of the conventional Upsilon(5s) quark model state with the lowest P-wave hybrid state.  
  Address [Bruschini, R.; Gonzalez, R.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Carrer Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462321800059 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3959  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva