toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guerrero, C.; Tessler, M.; Paul, M.; Lerendegui-Marco, J.; Heinitz, S.; Maugeri, E.A.; Domingo-Pardo, C.; Dressler, R.; Halfon, S.; Kivel, N.; Koster, U.; Palchan-Hazan, T.; Quesada, J.M.; Schumann, D.; Weissman, L. doi  openurl
  Title The s-process in the Nd-Pm-Sm region: Neutron activation of Pm-147 Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 797 Issue Pages (down) 134809 - 6pp  
  Keywords Nucleosynthesis; Neutron capture; Nuclear reactions; s-process; MACS; Neutron activation  
  Abstract The Nd-Pm-Sm branching is of interest for the study of the s-process, related to the production of heavy elements in stars. As Sm-148 and Sm-150 are s-only isotopes, the understanding of the branching allows constraining the s-process neutron density. In this context the key physics input needed is the cross section of the three unstable nuclides in the region: Nd-147 (10.98 d half-life), Pm-147 (2.62 yr) and Pm-148 (5.37 d). This paper reports on the activation measurement of Pm-147, the longest-lived of the three nuclides. The cross section measurement has been carried out by activation at the SARAF LiLiT facility using a 56(2) μg target. Compared to the single previous measurement of Pm-147, the measurement presented herein benefits from a target 2000 times more massive. The resulting Maxwellian Averaged Cross Section (MACS) to the ground and metastable states in Pm-148 are 469(50) mb and 357(27) mb. These values are 41% higher (to the ground state) and 15% lower (to the metastable state) than the values reported so far, leading however to a total cross section of 826(107) mb consistent within uncertainties with the previous result and hence leaving unchanged the previous calculation of the s-process neutron density.  
  Address [Guerrero, C.; Lerendegui-Marco, J.; Quesada, J. M.] Univ Seville, Seville, Spain, Email: cguerrero4@us.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000488071200026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4161  
Permanent link to this record
 

 
Author Ralet, D. et al; Gadea, A.; Perez, R.M. doi  openurl
  Title Evidence of octupole-phonons at high spin in Pb-207<bold> </bold> Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 797 Issue Pages (down) 134797 - 6pp  
  Keywords AGATA spectrometer; gamma-Ray tracking; VAMOS plus plus spectrometer; Plunger device; Nuclear deformation; Octupole phonon  
  Abstract A lifetime measurement of the 19/2(-) state in Pb-207 has been performed using the Recoil Distance Doppler-Shift (RDDS) method. The nuclei of interest were produced in multi-nucleon transfer reactions induced by a Pb-208 beam impinging on a Mo-100 enriched target. The beam-like nuclei were detected<bold> </bold>and identified in terms of their atomic mass number in the VAMOS++ spectrometer while the prompt gamma rays were detected by the AGATA tracking array. The measured large reduced transition probability B(E3, 19/2(-) -> 13/2(+)) = 40(8) W.u. is the first indication of the octupole phonon at high spin in Pb-207. An analysis in terms of a particle-octupole-vibration coupling model indicates that the measured B(E3) value in Pb-207 is compatible with the contributions from single-phonon and single particle E3 as well as E3 strength arising from the double-octupole-phonon 6(+) state, all adding coherently. A crucial aspect of the coupling model, namely the strong mixing between single-hole and the phonon-hole states, is confirmed in a realistic shell-model calculation.  
  Address [Ralet, D.; Georgiev, G.; Ljungvall, J.; Dupont, E.; Konstantinopoulos, T.; Korichi, A.; Lozeva, R.] Univ Paris Saclay, Univ Paris Sud, CSNSM, CNRS IN2P3, F-91405 Orsay, France, Email: clement@ganil.fr  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000488071200015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4163  
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V. url  doi
openurl 
  Title Scalar spectrum in a graviton soft wall model Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 12 Pages (down) 125003 - 16pp  
  Keywords glueball; meson; spectrum; AdS; CFT  
  Abstract In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.  
  Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584306700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4587  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages (down) 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
 

 
Author Kasieczka, G. et al; Sanz, V. url  doi
openurl 
  Title The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics Type Journal Article
  Year 2021 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 84 Issue 12 Pages (down) 124201 - 64pp  
  Keywords anomaly detection; machine learning; unsupervised learning; weakly supervised learning; semisupervised learning; beyond the standard model; model-agnostic methods  
  Abstract A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.  
  Address [Kasieczka, Gregor] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: gregor.kasieczka@uni-hamburg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727698500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5039  
Permanent link to this record
 

 
Author Martín-Luna, P.; Bonatto, A.; Bontoiu, C.; Xia, G.; Resta-Lopez, J. url  doi
openurl 
  Title Excitation of wakefields in carbon nanotubes: a hydrodynamic model approach Type Journal Article
  Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 25 Issue 12 Pages (down) 123029 - 12pp  
  Keywords carbon nanotube; wakefield; electron gas; plasmons  
  Abstract The interactions of charged particles with carbon nanotubes (CNTs) may excite electromagnetic modes in the electron gas produced in the cylindrical graphene shell constituting the nanotube wall. This wake effect has recently been proposed as a potential novel method of short-wavelength high-gradient particle acceleration. In this work, the excitation of these wakefields is studied by means of the linearized hydrodynamic model. In this model, the electronic excitations on the nanotube surface are described treating the electron gas as a 2D plasma with additional contributions to the fluid momentum equation from specific solid-state properties of the gas. General expressions are derived for the excited longitudinal and transverse wakefields. Numerical results are obtained for a charged particle moving within a CNT, paraxially to its axis, showing how the wakefield is affected by parameters such as the particle velocity and its radial position, the nanotube radius, and a friction factor, which can be used as a phenomenological parameter to describe effects from the ionic lattice. Assuming a particle driver propagating on axis at a given velocity, optimal parameters were obtained to maximize the longitudinal wakefield amplitude.  
  Address [Martin-Luna, P.] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001126333400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5855  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Observation of B-s(0) -> K* (+/-) K -/+ and evidence for B-s(0) -> K*(-) pi(+) decays Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages (down) 123001 - 18pp  
  Keywords flavour physics; B physics; branching fraction  
  Abstract Measurements of the branching fractions of B-s(0) -> K*K-+/-(-/+) and B-s(0) -> K*(+/-) pi(-/+) decays are performed using a data sample corresponding to 1.0 fb(-1) of protonproton collision data collected with the LHCb detector at a centre-of- mass energy of 7 TeV, where the K*(+/-) mesons are reconstructed in the K-s(0) pi(+/-) final state. The first observation of the B-s(0) -> K*(+/-) K--/+ decay and the first evidence for the B-s(0) -> K*(-) pi(+) decay are reported with branching fractions B(B-s(0) -> K*K-+/-(-/+)) = (12.7 +/- 1.9 +/- 1.9) x 10(-6) , B(B-s(0) -> K*(-) pi(+)) = (3.3 +/- 1.1 +/- 0.5) x 10(-6) , where the first uncertainties are statistical and the second are systematic. In addition, an upper limit of B(B-0 -> K*K-+/-(-/+)) < 0.4 (0.5) x 10(-6) is set at 90% (95%) confidence level.  
  Address [Amato, S.; Akiba, K. Carvalho; De Paula, L.; Francisco, O.; Gandelman, M.; Lopes, J. H.; Tostes, D. Martins; Otalora Goicochea, J. M.; Polycarpo, E.; Rangel, M. S.; Guimaraes, V. Salustino; De Paula, B. Souza; Szilard, D.; Vieira, D.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346821400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2064  
Permanent link to this record
 

 
Author Kulikov, I.; Algora, A.; Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R.B.; Herlert, A.; Huang, W.J.; Karthein, J.; Litvinov, Y.A.; Lunney, D.; Manea, V.; Mougeot, M.; Schweikhard, L.; Welker, A.; Wienholtz, F. doi  openurl
  Title Masses of short-lived Sc-49, Sc-50, As-70, Br-73 and stable Hg-196 nuclides Type Journal Article
  Year 2020 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 1002 Issue Pages (down) 121990 - 15pp  
  Keywords ISOLTRAP; Mass measurements; Atomic mass evaluation; Multi-reflection time-of-flight; Penning trap mass spectrometry  
  Abstract Mass measurements of Sc-49,Sc-50, As-70, Br-73 and Hg-196 nuclides produced at CERN's radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.  
  Address [Kulikov, I; Litvinov, Yu A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany, Email: ivan.kulikov@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000567817300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4528  
Permanent link to this record
 

 
Author PANDA Collaboration (Davi, F. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the endcap disc DIRC Type Journal Article
  Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 49 Issue 12 Pages (down) 120501 - 128pp  
  Keywords technical design report; particle identification; Cherenkov detector; PANDA  
  Abstract PANDA (anti-proton annihiliation at Darmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2 x 10(32) cm(-2) s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5 degrees to 22 degrees and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA disc DIRC detector that has not been used in any other high energy physics experiment before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees sufficient safety margins.  
  Address [Davi, F.] Univ Politecn Marche Ancona, Ancona, Italy, Email: muschmidt@uni-wuppertal.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000928188400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5476  
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L. url  doi
openurl 
  Title Electron scattering and neutrino physics Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 12 Pages (down) 120501 - 34pp  
  Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering  
  Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.  
  Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001086874300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5748  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva