toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fernandes, L.M.P.; Freitas, E.D.C.; Ball, M.; Gomez-Cadenas, J.J.; Monteiro, C.M.B.; Yahlali, N.; Nygren, D.; dos Santos, J.M.F. url  doi
openurl 
  Title Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter Type Journal Article
  Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 5 Issue Pages (up) P09006 - 15pp  
  Keywords Interaction of radiation with matter; Gaseous detectors; Photon detectors for UV, visible and IR photons (vacuum) (photomultipliers, HPDs, others)  
  Abstract NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires excellent energy resolution, which can be achieved in a Xe TPC with electroluminescence readout. Hamamatsu R8520-06SEL photomultipliers are good candidates for the scintillation readout. The performance of this photomultiplier, used as VUV photosensor in a gas proportional scintillation counter, was investigated. Initial results for the detection of primary and secondary scintillation produced as a result of the interaction of 5.9 keV X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are presented. An energy resolution of 8.0% was obtained for secondary scintillation produced by 5.9 keV X-rays. No significant variation of the primary scintillation was observed for different pressures (1, 2 and 3 bar) and for electric fields up to 0.8 V cm(-1) torr(-1) in the drift region, demonstrating negligible recombination luminescence. A primary scintillation yield of 81 +/- 7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72 +/- 6 eV to produce a primary scintillation photon in xenon.  
  Address [Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, Instrumentat Ctr, P-3004516 Coimbra, Portugal, Email: pancho@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283796100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 255  
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages (up) P09011 - 20pp  
  Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Particle tracking detectors (Gaseous detectors); Time projection chambers  
  Abstract NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and “blob” regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q(beta beta)).  
  Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: andrew.laing@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326680200025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1653  
Permanent link to this record
 

 
Author NEXT Collaboration (Rogers, L. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages (up) P10002 - 19pp  
  Keywords Gaseous detectors; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which still await proper characterization in high pressure noble gas environments. As HPGTPCs increase in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in argon and xenon, including studying gas absorption, swelling and high voltage insulation strength.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: leslie.rogers@mavs.uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000445999500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3744  
Permanent link to this record
 

 
Author NEXT Collaboration (Lorca, D. et al); Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Characterisation of NEXT-DEMO using xenon K-alpha X-rays Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages (up) P10007 - 20pp  
  Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers  
  Abstract The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a similar to 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K-alpha X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from Na-22.  
  Address [Lorca, D.; Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: david.lorca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345858500050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2055  
Permanent link to this record
 

 
Author NEXT Collaboration (Martinez-Lema, G. et al); Palmeiro, B.; Botas, A.; Laing, A.; Renner, J.; Simon, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Lugue, C.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Calibration of the NEXT-White detector using Kr-83m decays Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages (up) P10014 - 21pp  
  Keywords Charge transport; multiplication and electroluminescence in rare gases and liquids; Gaseous imaging and tracking detectors; Time projection Chambers (TPC); Double-beta decay detectors  
  Abstract The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@usc.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447061800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3754  
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Martinez-Lema, G.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Luque, C.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Initial results on energy resolution of the NEXT-White detector Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages (up) P10020 - 14pp  
  Keywords Large detector-systems performance; Analysis and statistical methods; Double-beta decay detectors; Time projection chambers  
  Abstract One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with Cs-137 and Th-232 sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q(beta beta).  
  Address [Adams, C.; Guenette, R.; Martin-Albo, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: josren@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447691000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3775  
Permanent link to this record
 

 
Author NEXT Collaboration (Ghosh, S. et al); Martin-Albo, J.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martinez-Vara, M.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages (up) P11031 - 16pp  
  Keywords Detector design and construction technologies and materials; Double-beta decay detectors; Time projection Chambers (TPC)  
  Abstract Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm We also see that the reflectance of PIFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance in the visible without introducing a specular component in the reflectance.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: jhaefner@g.harvard.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4633  
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Prado, D.; Veloso, J.F.C.A.; Yahlali, N. url  doi
openurl 
  Title Development of a real-time tritium-in-water monitor Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 12 Pages (up) T12008 - 14pp  
  Keywords Instruments for environmental monitoring; food control and medical use; Very low-energy charged particle detectors; Scintillators and scintillating fibres and light guides  
  Abstract In this paper, we report the development and performance of a detector module envisaging a tritium-in-water real-time activity monitor. The monitor is based on modular detection units whose number can be chosen according to the required sensitivity. The full system is being designed to achieve a Minimum Detectable Activity (MDA) of 100 Bq/L of tritium-in-water activity which is the limit established by the E.U. Council Directive 2013/51/Euratom for water intended for human consumption. The same system can be used as a real-time pre-alert system for nuclear power plant regarding tritium-in water environmental surveillance. The first detector module was characterized, commissioned and installed immediately after the discharge channel of the Arrocampo dam (Almaraz nuclear power plant, Spain) on the Tagus river. Due to the high sensitivity of the single detection modules, the system requires radioactive background mitigation techniques through the use of active and passive shielding. We have extrapolated a MDA of 3.6 kBq/L for a single module being this value limited by the cosmic background. The obtained value for a single module is already compatible with a real-time environmental surveillance and pre-alert system. Further optimization of the single-module sensitivity will imply the reduction of the number of modules and the cost of the detector system.  
  Address [Azevedo, C. D. R.; Prado, D.] Univ Aveiro, I3N, Phys Dept, Campus Univ Santiago, P-3810193 Aveiro, Portugal, Email: cdazevedo@ua.pt  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001147582800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5912  
Permanent link to this record
 

 
Author NEXT Collaboration (Monrabal, F. et al); Laing, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Felkai, R.; Martinez, A.; Musti, M.; Querol, M.; Rodriguez, J.; Simon, A.; Torrent, J.; Botas, A.; Diaz, J.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Romo-Luque, C.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title The NEXT White (NEW) detector Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages (up) P12010 - 38pp  
  Keywords Double-beta decay detectors; Particle tracking detectors; Scintillators; scintillation and light emission processes (solid gas and liquid scintillators); Time projection chambers  
  Abstract Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.  
  Address [Ouero, M.; Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: monrabal18@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452463500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3833  
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Neutral Bremsstrahlung Emission in Xenon Unveiled Type Journal Article
  Year 2022 Publication Physical Review X Abbreviated Journal Phys. Rev. X  
  Volume 12 Issue 2 Pages (up) 021005 - 23pp  
  Keywords  
  Abstract We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10(-2) photon/e(-) cm(-1) bar(-1) at pressure-reduced electric field values of 50 V cm(-1) bar(-1) to above 3 x 10(-1) photon/e(-) cm(-1) bar(-1) at 500 V cm(-1) bar(-1). Above 1.5 kV cm(-1) bar(-1), values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around 1 photon/e(-) cm(-1) bar(-1), which is about 2 orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the "buffer region, where keeping the electric field below the electroluminescence threshold does not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path toward obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to 20-50 photons/e(-) cm(-1).  
  Address [Henriques, C. A. O.; Teixeira, J. M. R.; Monteiro, C. M. B.; Fernandes, A. F. M.; Fernandes, L. M. P.; Freitas, E. D. C.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, ILIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: henriques@uc.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000792590100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5220  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva