|   | 
Details
   web
Records
Author Kim, J.S.; Reuter, J.; Rolbiecki, K.; Ruiz de Austri, R.
Title A resonance without resonance: Scrutinizing the diphoton excess at 750 GeV Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 755 Issue Pages (down) 403-408
Keywords BSM phenomenology; LHC
Abstract Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.
Address [Kim, Jong Soo; Rolbiecki, Krzysztof] UAM CSIC, Inst Fis Teor, Madrid, Spain, Email: jong.kim@csic.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000373568100059 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2713
Permanent link to this record
 

 
Author Allanach, B.C.; Martin, S.P.; Robertson, D.G.; Ruiz de Austri, R.
Title The inclusion of two-loop SUSYQCD corrections to gluino and squark pole masses in the minimal and next-to-minimal supersymmetric standard model: SOFTSUSY3.7 Type Journal Article
Year 2017 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 219 Issue Pages (down) 339-345
Keywords Gluino; Squark; MSSM; NMSSM
Abstract We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD) corrections of order O(alpha(2)(s)) to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or the next-to-minimal supersymmetric standard model (NMSSM). This document provides an overview of the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark and gluino pole mass predictions. Program summary Program title: SOFTSUSY Program Files doi: http://dx.doLorg/10.17632/sh77x9j7hs.1 Licensing provisions: GNU GPLv3 Programming language: C++, fortran, C Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM or the NMSSM. The solution to the renormalization group equations must be consistent with theoretical boundary conditions on supersymmetry breaking parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested fixed point iteration. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroWeak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the MSSM (R-parity conserving or violating) or the real R-parity conserving NMSSM only. Journal reference of previous version: Comput. Phys. Comm. 189 (2015) 192. Does the new version supersede the previous version?: Yes. Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since they strongly affect supersymmetric particle production cross-sections at colliders. Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of next-to next-to leading order in SUSYQCD, i.e. including terms up to O(g(s)(4)/(16 pi(2))(2)). Additional comments: Program obtainable from http://softsusy.hepforge.org/
Address [Allanach, B. C.] Univ Cambridge, DAMTP, CMS, Wilberforce Rd, Cambridge CB3 0WA, England, Email: rruiz@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000407984100030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3258
Permanent link to this record
 

 
Author Kpatcha, E.; Lopez-Fogliani, D.E.; Munoz, C.; Ruiz de Austri, R.
Title Impact of Higgs physics on the parameter space of the μnu SSM Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 4 Pages (down) 336 - 43pp
Keywords
Abstract Given the increasing number of experimental data, together with the precise measurement of the properties of the Higgs boson at the LHC, the parameter space of supersymmetric models starts to be constrained. We carry out a detailed analysis of this issue in the framework of the μnu SSM. In this model, three families of right-handed neutrino superfields are present in order to solve the μproblem and simultaneously reproduce neutrino physics. The new couplings and sneutrino vacuum expectation values in the μnu SSM induce new mixing of states, and, in particular, the three right sneutrinos can be substantially mixed with the neutral Higgses. After diagonalization, the masses of the corresponding three singlet-like eigenstates can be smaller or larger than the mass of the Higgs, or even degenerated with it. We analyze whether these situations are still compatible with the experimental results. To address it we scan the parameter space of the Higgs sector of the model. In particular, we sample the μnu SSM using a powerful likelihood data-driven method, paying special attention to satisfy the constraints coming from Higgs sector measurements/limits (using HiggsBounds and HiggsSignals), as well as a class of flavor observables such as B and μdecays, while muon g-2 is briefly discussed. We find that large regions of the parameter space of the μnu SSM are viable, containing an interesting phenomenology that could be probed at the LHC.
Address [Kpatcha, Essodjolo; Munoz, Carlos] Univ Autonoma Madrid UAM, Dept Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: kpatcha.essodjolo@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000529962200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4386
Permanent link to this record
 

 
Author De Romeri, V.; Kim, J.S.; Martin Lozano, V.; Rolbiecki, K.; Ruiz de Austri, R.
Title Confronting dark matter with the diphoton excess from a parent resonance decay Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 5 Pages (down) 262 - 13pp
Keywords
Abstract A diphoton excess with an invariant mass of about 750 GeV has been recently reported by both ATLAS and CMS experiments at LHC. While the simplest interpretation requires the resonant production of a 750 GeV (pseudo) scalar, here we consider an alternative setup, with an additional heavy parent particle which decays into a pair of 750 GeV resonances. This configuration improves the agreement between the 8 and 13 TeV data. Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. The invisible decays of the light resonance help to suppress additional decay channels into Standard Model particles in association with the diphoton signal. We realise our hierarchical framework in the context of an effective theory, and we analyse the diphoton signal as well as the consistency with other LHC searches. We finally address the interplay of the LHC results with the dark matter phenomenology, namely the compatibility with the relic density abundance and the indirect detection bounds.
Address [De Romeri, Valentina; Kim, Jong Soo; Martin-Lozano, Victor; Rolbiecki, Krzysztof] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000399931700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3088
Permanent link to this record
 

 
Author Caron, S.; Kim, J.S.; Rolbiecki, K.; Ruiz de Austri, R.; Stienen, B.
Title The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 4 Pages (down) 257 - 25pp
Keywords
Abstract A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets – each tested against 200 signal regions by ATLAS – have been used to train and validate SUSY-AI. The code is currently able to reproduce theATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.
Address [Caron, Sascha; Stienen, Bob] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands, Email: krolb@fuw.edu.pl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000400079300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3097
Permanent link to this record