toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Bridging a gap between continuum-QCD and ab initio predictions of hadron observables Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 742 Issue Pages (down) 183-188  
  Keywords Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies  
  Abstract Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: cdroberts@anl.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350555900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2156  
Permanent link to this record
 

 
Author Scandale, W. et al; Lari, L. doi  openurl
  Title Optimization of the crystal assisted collimation of the SPS beam Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 726 Issue 1-3 Pages (down) 182-186  
  Keywords Accelerator; Beam collimation; Crystal; Channeling  
  Abstract The possibility for optimization of crystal assisted collimation has been studied at the CERN SPS for stored beams of protons and Pb ions with 270 GeV/c per unit charge. A bent silicon crystal used as a primary collimator deflects halo particles in the channeling regime, directing them into a tungsten absorber. In channeling conditions a strong reduction of off-momentum particle numbers produced in the crystal and absorber, which form collimation leakage, has been observed in the first high dispersion (HD) area downstream. The present study shows that the collimation leakage is minimal for some values of the absorber offset relative to the crystal. The optimal offset value is larger for Pb ions because of their considerably larger ionization losses in the crystal, which cause large increases of particle betatron oscillation amplitudes. The optimal absorber offset allows obtaining maximal efficiency of crystal-assisted collimation.  
  Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: alexander.taratin@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326482200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1694  
Permanent link to this record
 

 
Author Capra, S.; Mengoni, D.; Dueñas, J.A.; John, P.R.; Gadea, A.; Aliaga, R.J.; Dormard, J.J.; Assie, M.; Pullia, A. doi  openurl
  Title Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 935 Issue Pages (down) 178-184  
  Keywords ASIC; Charge-sensitive preamplifier; Low-noise applications; Particle spectrometry; Dead time; Silicon detector  
  Abstract The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth.  
  Address [Capra, S.; Pullia, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, IT-20133 Milan, Italy, Email: stefano.capra@unimi.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470063800026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4042  
Permanent link to this record
 

 
Author Carles, M.; Lerche, C.W.; Sanchez, F.; Mora, F.; Benlloch, J.M. doi  openurl
  Title Position correction with depth of interaction information for a small animal PET system Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages (down) S176-S180  
  Keywords DOI; PET; Positioning algorithm; Gamma ray imaging; Continuous scintillators  
  Abstract In this work we study the effects on the spatial resolution when depth of interaction (001) information is included in the parameterization of the line of response (LOR) for a small animal positron emission tomography (PET) system. One of the most important degrading factors for PET is the parallax error introduced in systems that do not provide DOI information of the recorded gamma-rays. Our group has designed a simple and inexpensive method for DOI determination in continuous scintillation crystals. This method is based, on one hand, in the correlation between the scintillation light distribution width in monolithic crystals and the DOI, and, on the other hand, on a small modification of the widely applied charge dividing circuits (CDR). In this work we present a new system calibration that includes the DOI information, and also the development of the correction equations that relates the LOR without and with DOI information. We report the results obtained for different measurements along the transaxial field of view (FOV) and the image quality enhancement achieved specially at the edge of the FOV.  
  Address [Carles, M.; Sanchez, F.; Benlloch, J. M.] Inst Fis Corpuscular CSIC UV, Valencia 46071, Spain, Email: montcar@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900046 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1067  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the CKM angle gamma using B-+/- -> DK +/- with D -> K-S(0)pi(+)pi(-), (KSK+K-)-K-0 decays Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (down) 176 - 36pp  
  Keywords B physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)  
  Abstract A binned Dalitz plot analysis of B-+/- -> DK +/- decays, with D -> K-S(0)pi(+)pi(-) and D -> (KSK+K-)-K-0, is used to perform a measurement of the CP-violating observables x(+/-) and y(+/-), which are sensitive to the Cabibbo-Kobayashi-Maskawa angle gamma. The analysis is performed without assuming any D decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0 fb(-1), the values of the CP violation parameters are found to be x = (9.0 +/- 1.7 +/- 0.7 +/- 0.4) x 10(-2), y = (2.1 +/- 2.2 +/- 0.5 +/- 1.1) x 10(-2), x(+) = (-7.7 +/- 1.9 +/- 0.7 +/- 0.4) x 10(-2), and y(+) = (-1.0 +/- 1.9 +/- 0.4 +/- 0.9) x10(-2). The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the strong-phase measurements. These values are used to obtain gamma = (87(+)(12)(+11))degrees, r(B) = 0.086(-)(0.1)(43)(+0.013), and delta(B) = (101 +/- 11), where r(B) is the ratio between the suppressed and favoured B-decay amplitudes and delta(B) is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the LHCb experiment, to give gamma = (80(-9)(+10))degrees, r(B) = 0.080 +/- 0.011, and delta(B) = (110 +/- 10)degrees.  
  Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: mikkel.bjoern@physics.ox.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443527200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3716  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva