|   | 
Details
   web
Records
Author Brown, J.M.C.; Dimmock, M.R.; Gillam, J.E.; Paganin, D.M.
Title A low energy bound atomic electron Compton scattering model for Geant4 Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B
Volume 338 Issue Pages (up) 77-88
Keywords Compton scattering; Geant4; Radiation transport modelling; Monte Carlo method
Abstract A two-body fully relativistic three-dimensional scattering framework has been utilised to develop an alternative Compton scattering computational model to those adapted from Ribberfors' work for Monte Carlo modelling of Compton scattering. Using a theoretical foundation that ensures the conservation of energy and momentum in the relativistic impulse approximation, this new model, the Monash University Compton scattering model, develops energy and directional algorithms for both the scattered photon and ejected Compton electron from first principles. The Monash University Compton scattering model was developed to address the limitation of the Compton electron directionality algorithms of other computational models adapted from Ribberfors' work. Here the development of the Monash University Compton scattering model, including its implementation in a Geant4 low energy electromagnetic physics class, G4LowEPComptonModel, is outlined. Assessment of the performance of G4LowEPComptonModel was undertaken in two steps: (1) comparison with respect to the two standard Compton scattering classes of Geant4 version 9.5, G4LivermoreComptonModel and G4PenelopeComptonModel, and (2) experimental comparison with respect to Compton electron kinetic energy spectra obtained from the Compton scattering of 662 key photons off the K-shell of gold. Both studies illustrate that the Monash University Compton scattering model, and in turn G4LowEPComptonModel, is a viable replacement for the majority of computational models that have been adapted from Ribberfors' work. It was also shown that the Monash University Compton scattering model is able to reproduce the Compton scattering triply differential cross-section Compton electron kinetic energy spectra of 662 keV photons K-shell scattering off of gold to within experimental uncertainty.
Address [Brown, J. M. C.; Paganin, D. M.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia, Email: jeremy.brown@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Medium
Area Expedition Conference
Notes WOS:000343390400012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1973
Permanent link to this record
 

 
Author Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.
Title Effective field theory of dark matter: a global analysis Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages (up) 077 - 22pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Effective field theories
Abstract We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.
Address [Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; Weniger, Christoph] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: sebastian.liem@uva.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000383545500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2864
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.
Title Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures Type Journal Article
Year 2021 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 68 Issue 2 Pages (up) 78-91
Keywords RF accelerating structures; RF pulse heating; thermal analysis
Abstract The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] UV, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000619349900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4720
Permanent link to this record
 

 
Author Adolf, P.; Hirsch, M.; Päs, H.
Title Radiative neutrino masses and the Cohen-Kaplan-Nelson bound Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (up) 078 - 14pp
Keywords Neutrino Mixing; Other Weak Scale BSM Models; Specific BSM Phenomenology
Abstract Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.
Address [Adolf, Patrick; Paes, Heinrich] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany, Email: patrick.adolf@tu-dortmund.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001120244000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5851
Permanent link to this record
 

 
Author n_TOF Collaboration (Tarrio, D. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 743 Issue Pages (up) 79-85
Keywords Fission; Neutron; Anisotropy; Angular distribution; Th-232; Gas detectors
Abstract A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 degrees with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the Th-232(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.
Address [Tarrio, D.; Duran, I.; Paradela, C.; Caamano, M.] Univ Santiago de Compostela, Santiago De Compostela, Spain, Email: dtarriov@gmail.com
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000334005000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1746
Permanent link to this record
 

 
Author Hellmann, C.; Ruiz-Femenia, P.
Title Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading order S-wave coefficients Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (up) 084 - 49pp
Keywords Cosmology of Theories beyond the SM; Supersymmetric Standard Model; Nonperturbative Effects
Abstract This paper is a continuation of an earlier work (arXiv:1210.7928) which computed analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM. Here we extend the results by providing the next-to-next-to-leading order corrections to the rates in the non-relativistic expansion in momenta and mass differences, which include leading P-wave effects, in analytic form. The results are a necessary input for the calculation of the Sommerfeld-enhanced dark matter annihilation rates including short-distance corrections at next-to-next-to-leading order in the non-relativistic expansion in the general MSSM with neutralino LSP.
Address [Hellmann, C.] Tech Univ Munich, Phys Dept T31, D-85748 Garching, Germany, Email: charlotte.hellmann@tum.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000324113700084 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1594
Permanent link to this record
 

 
Author Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; Kennea, J.A.; Marshall, F.E.; Mastichiadis, A.; Osborne, J.P.; Santander, M.; Tohuvavohu, A.; Turley, C.F.
Title A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration Type Journal Article
Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 864 Issue 1 Pages (up) 84 - 16pp
Keywords Lacertae objects: general; BL Lacertae objects: individual (TXS 0506+056); galaxies: active; gamma rays: galaxies; neutrinos; radiation mechanisms: non-thermal
Abstract Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only similar to 3 sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS. 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic (EM) and high-energy neutrino) emissions. Accounting properly for EM cascades in the emission region, we find a physically consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS. 0506+056 serve as a better probe of its hadronic acceleration and highenergy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS. 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultrahigh-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS. 0506+056 may disfavor single-zone models, in which.-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS. 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.
Address [Keivani, A.; Murase, K.; DeLaunay, J. J.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: keivani@psu.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000443293800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3708
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope Type Journal Article
Year 2010 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 33 Issue 2 Pages (up) 86-90
Keywords Atmospheric muons; Depth intensity relation; Potassium-40
Abstract A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of K-40 and the bioluminescence in the sea water. The K-40 background is used to calibrate the efficiency of the photo-multiplier tubes.
Address [Zaborov, D.] Inst Theoret & Expt Phys, Moscow 117218, Russia, Email: Dmitry.Zaborov@itep.ru
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000275514800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 485
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z.
Title EFT at FASER nu Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages (up) 086 - 46pp
Keywords Effective Field Theories; Neutrino Physics
Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000707348700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5002
Permanent link to this record
 

 
Author Calibbi, L.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Muon and electron g – 2 and lepton masses in flavor models Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (up) 087 - 23pp
Keywords Precision QED; Beyond Standard Model; Effective Field Theories; Quark Masses and SM Parameters
Abstract The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
Address [Calibbi, Lorenzo] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China, Email: calibbi@nankai.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000542705000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4443
Permanent link to this record