toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moreno Llacer, M.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Observation of electroweak production of two jets and a Z-boson pair Type Journal Article
  Year 2023 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 19 Issue 2 Pages (up) 237-253  
  Keywords  
  Abstract Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton-proton collision data corresponding to an integrated luminosity of 139fb(-1) recorded at a centre-of-mass energy of 13TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7 sigma, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states.  
  Address [Aad, G.; Barbero, M.; Bartolini, G.; Brahimi, N.; Calandri, A.; Coadou, Y.; Corga, K. De Vasconcelos; Diaconu, C.; Djama, F.; Duperrin, A.; El Kosseifi, R.; Feligioni, L.; Guo, Z.; Hallewell, G. D.; Hubaut, F.; Knoops, E. B. F. G.; Kukla, R.; Le Guirriec, E.; Monnier, E.; Muanza, S.; Nagy, E.; Nguyen, H. D. N.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Wolff, R.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: atlas.publications@cern.ch  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001005403200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5598  
Permanent link to this record
 

 
Author Abreu, L.M.; Wang, W.F.; Oset, E. url  doi
openurl 
  Title Traces of the new alpha(0)(1780) resonance in the J/Psi ->phi K+ K-(K-0 K_(0)) reaction Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 3 Pages (up) 243 - 11pp  
  Keywords  
  Abstract We study the J/Psi ->phi K+ K- decay, looking for differences in the production rates of K+K- or K-0 K-(0) in the region of 1700-1800 MeV, where two resonances appear dynamically generated from the vector-vector interaction. Two resonances are known experimentally in that region, the f(0)(1710) and a new resonance reported by the BABAR and BESIII collaborations. The K K should be produced with I = 0 in that reaction, but due to the different K*(0) and K*(+) masses some isospin violation appears. Yet, due to the large width of the K*, the violation obtained is very small and the rates of K+K- or K-0 K-0 production are equal within 5%. However, we also find that due to the step needed to convert two vectors into K K, a shape can appear in the K K mass distribution that can mimic the a0 production around the K* K* threshold, and is simply a threshold effect.  
  Address [Abreu, Luciano M.] Univ Fed Bahia, Inst Fis, Campus Univ Ondina, BR-40170115 Ondina, BA, Brazil, Email: luciano.abreu@ufba.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000957576400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5505  
Permanent link to this record
 

 
Author Nzongani, U.; Zylberman, J.; Doncecchi, C.E.; Perez, A.; Debbasch, F.; Arnault, P. url  doi
openurl 
  Title Quantum circuits for discrete-time quantum walks with position-dependent coin operator Type Journal Article
  Year 2023 Publication Quantum Information Processing Abbreviated Journal Quantum Inf. Process.  
  Volume 22 Issue 7 Pages (up) 270 - 46pp  
  Keywords Quantum walks; Quantum circuits; Quantum simulation  
  Abstract The aim of this paper is to build quantum circuits that implement discrete-time quantum walks having an arbitrary position-dependent coin operator. The position of the walker is encoded in base 2: with n wires, each corresponding to one qubit, we encode 2(n) position states. The data necessary to define an arbitrary position-dependent coin operator is therefore exponential in n. Hence, the exponentiality will necessarily appear somewhere in our circuits. We first propose a circuit implementing the position-dependent coin operator, that is naive, in the sense that it has exponential depth and implements sequentially all appropriate position-dependent coin operators. We then propose a circuit that “transfers” all the depth into ancillae, yielding a final depth that is linear in n at the cost of an exponential number of ancillae. Themain idea of this linear-depth circuit is to implement in parallel all coin operators at the different positions. Reducing the depth exponentially at the cost of having an exponential number of ancillae is a goal which has already been achieved for the problem of loading classical data on a quantum circuit (Araujo in Sci Rep 11:6329, 2021) (notice that such a circuit can be used to load the initial state of the walker). Here, we achieve this goal for the problem of applying a position-dependent coin operator in a discrete-time quantum walk. Finally, we extend the result of Welch (New J Phys 16:033040, 2014) from position-dependent unitaries which are diagonal in the position basis to position-dependent 2 x 2-block-diagonal unitaries: indeed, we show that for a position dependence of the coin operator (the block-diagonal unitary) which is smooth enough, one can find an efficient quantum-circuit implementation approximating the coin operator up to an error epsilon (in terms of the spectral norm), the depth and size of which scale as O(1/epsilon). A typical application of the efficient implementation would be the quantum simulation of a relativistic spin-1/2 particle on a lattice, coupled to a smooth external gauge field; notice that recently, quantum spatial-search schemes have been developed which use gauge fields as the oracle, to mark the vertex to be found (Zylberman in Entropy 23:1441, 2021), (Fredon arXiv:2210.13920). A typical application of the linear-depth circuit would be when there is spatial noise on the coin operator (and hence a non-smooth dependence in the position).  
  Address [Nzongani, Ugo; Doncecchi, Carlo-Elia; Arnault, Pablo] Univ Paris Saclay, CNRS, INRIA, Lab Methodes Formelles,ENS Paris Saclay, F-91190 Gif Sur Yvette, France, Email: ugo.nzongani@universite-paris-saclay.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-0755 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022408900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5587  
Permanent link to this record
 

 
Author Pasqualato, G. et al; Domingo-Pardo, C.; Gadea, A. doi  openurl
  Title Shape evolution in even-mass 98-104Zr isotopes via lifetime measurements using the γ γ-coincidence technique Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 11 Pages (up) 276 - 13pp  
  Keywords  
  Abstract The Zirconium (Z = 40) isotopic chain has attracted interest for more than four decades. The abrupt lowering of the energy of the first 2(+) state and the increase in the transition strength B(E2; 2(1)(+) -> 0(1)(+) ) going from Zr-98 to Zr-100 has been the first example of “quantum phase transition” in nuclear shapes, which has few equivalents in the nuclear chart. Although a multitude of experiments have been performed to measure nuclear properties related to nuclear shapes and collectivity in the region, none of the measured lifetimes were obtained using the Recoil Distance Doppler Shift method in the gamma gamma-coincidence mode where a gate on the direct feeding transition of the state of interest allows a strict control of systematical errors. This work reports the results of lifetime measurements for the first yrast excited states in Zr98-104 carried out to extract reduced transition probabilities. The new lifetime values in gamma gamma-coincidence and gamma-single mode are compared with the results of former experiments. Recent predictions of the Interacting Boson Model with Configuration Mixing, the Symmetry Conserving Configuration Mixing model based on the Hartree-Fock- Bogoliubov approach and the Monte Carlo Shell Model are presented and compared with the experimental data.  
  Address [Pasqualato, G.; Ljungvall, J.; Georgiev, G.; Korichi, A.; Ralet, D.; Verney, D.] Univ Paris Saclay, CNRS, IN2P3, IJCLab, Orsay, France, Email: giorgia.pasqualato.1@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001107209400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5852  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D. doi  openurl
  Title Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
  Year 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices  
  Volume 70 Issue 1 Pages (up) 288-295  
  Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000890813600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5427  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva