|   | 
Details
   web
Records
Author Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J.
Title The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 33 Issue Pages (down) 100851 - 17pp
Keywords Cosmological parameters; Spatial curvature; Cosmological tensions
Abstract The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.
Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000704383100022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4984
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions Type Journal Article
Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 30 Issue Pages (down) 100666 - 12pp
Keywords Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy
Abstract We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000595300400037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4646
Permanent link to this record
 

 
Author Khosa, C.K.; Mars, L.; Richards, J.; Sanz, V.
Title Convolutional neural networks for direct detection of dark matter Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages (down) 095201 - 20pp
Keywords dark matter; dark matter detection; neural networks; xenon1T; WIMPs
Abstract The XENON1T experiment uses a time projection chamber (TPC) with liquid xenon to search for weakly interacting massive particles (WIMPs), a proposed dark matter particle, via direct detection. As this experiment relies on capturing rare events, the focus is on achieving a high recall of WIMP events. Hence the ability to distinguish between WIMP and the background is extremely important. To accomplish this, we suggest using convolutional neural networks (CNNs); a machine learning procedure mainly used in image recognition tasks. To explore this technique we use XENON collaboration open-source software to simulate the TPC graphical output of dark matter signals and main backgrounds. A CNN turns out to be a suitable tool for this purpose, as it can identify features in the images that differentiate the two types of events without the need to manipulate or remove data in order to focus on a particular region of the detector. We find that the CNN can distinguish between the dominant background events (ER) and 500 GeV WIMP events with a recall of 93.4%, precision of 81.2% and an accuracy of 87.2%.
Address [Khosa, Charanjit K.; Mars, Lucy; Richards, Joel; Sanz, Veronica] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: charanjit.kaur@sussex.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000555607800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4485
Permanent link to this record
 

 
Author Clement, G.; Fabbri, A.
Title A scenario for critical scalar field collapse in AdS(3) Type Journal Article
Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 32 Issue 9 Pages (down) 095009 - 16pp
Keywords critical collapse; exact solutions; AdS(3)
Abstract We present a family of exact solutions, depending on two parameters alpha and b (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant Lambda. For b not equal 0 these solutions reduce to the static Banados-Teitelboim-Zanelli (BTZ) family of vacuum solutions, with mass M = -alpha. For b not equal 0, the solutions become dynamical and develop a strong spacelike central singularity. The alpha < 0 solutions are black-hole like, with a global structure topologically similar to that of the BTZ black holes, and a finite effective mass. We show that the near-singularity behavior of the solutions with alpha > 0 agrees qualitatively with that observed in numerical simulations of sub-critical collapse, including the independence of the near-critical regime on the angle deficit of the spacetime. We analyze in the Lambda = 0 approximation the linear perturbations of the self-similar threshold solution, alpha = 0, and find that it has only one unstable growing mode, which qualifies it as a candidate critical solution for scalar field collapse.
Address [Clement, Gerard] Univ Savoie, CNRS, LAPTh, F-74941 Annecy Le Vieux, France, Email: gerard.clement@lapth.cnrs.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000353351500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2192
Permanent link to this record
 

 
Author Gonzalez, P.
Title Generalized screened potential model Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue 9 Pages (down) 095001 - 12pp
Keywords quark; meson; potential
Abstract A new non relativistic quark model to calculate the spectrum of heavy quark mesons is developed. The model is based on an interquark potential interaction that implicitly incorporates screening effects from meson-meson configurations. An analysis of the bottomonium spectrum shows the appearance of extra states as compared to conventional non screened potential models.
Address Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: pedro.gonzalez@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000342356400014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1955
Permanent link to this record